BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

828 related articles for article (PubMed ID: 19702326)

  • 1. One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids.
    Lu J; Yang JX; Wang J; Lim A; Wang S; Loh KP
    ACS Nano; 2009 Aug; 3(8):2367-75. PubMed ID: 19702326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ionic liquid-functionalized graphene as modifier for electrochemical and electrocatalytic improvement: comparison of different carbon electrodes.
    Du M; Yang T; Ma S; Zhao C; Jiao K
    Anal Chim Acta; 2011 Apr; 690(2):169-74. PubMed ID: 21435472
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In silico free energy predictions for ionic liquid-assisted exfoliation of a graphene bilayer into individual graphene nanosheets.
    Kamath G; Baker GA
    Phys Chem Chem Phys; 2012 Jun; 14(22):7929-33. PubMed ID: 22552225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A green approach to the synthesis of graphene nanosheets.
    Guo HL; Wang XF; Qian QY; Wang FB; Xia XH
    ACS Nano; 2009 Sep; 3(9):2653-9. PubMed ID: 19691285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets.
    Zhu C; Guo S; Fang Y; Dong S
    ACS Nano; 2010 Apr; 4(4):2429-37. PubMed ID: 20359169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ionic liquid-graphene hybrid nanosheets as an enhanced material for electrochemical determination of trinitrotoluene.
    Guo S; Wen D; Zhai Y; Dong S; Wang E
    Biosens Bioelectron; 2011 Apr; 26(8):3475-81. PubMed ID: 21333522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemistry and electrocatalysis of hemoglobin in Nafion/nano-CaCO3 film on a new ionic liquid BPPF6 modified carbon paste electrode.
    Sun W; Gao R; Jiao K
    J Phys Chem B; 2007 May; 111(17):4560-7. PubMed ID: 17425353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct electrochemical reduction of graphene oxide on ionic liquid doped screen-printed electrode and its electrochemical biosensing application.
    Ping J; Wang Y; Fan K; Wu J; Ying Y
    Biosens Bioelectron; 2011 Oct; 28(1):204-9. PubMed ID: 21807494
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical unzipping of multi-walled carbon nanotubes for facile synthesis of high-quality graphene nanoribbons.
    Shinde DB; Debgupta J; Kushwaha A; Aslam M; Pillai VK
    J Am Chem Soc; 2011 Mar; 133(12):4168-71. PubMed ID: 21388198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controllable selective exfoliation of high-quality graphene nanosheets and nanodots by ionic liquid assisted grinding.
    Shang NG; Papakonstantinou P; Sharma S; Lubarsky G; Li M; McNeill DW; Quinn AJ; Zhou W; Blackley R
    Chem Commun (Camb); 2012 Feb; 48(13):1877-9. PubMed ID: 22228444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct exfoliation of natural graphite into micrometre size few layers graphene sheets using ionic liquids.
    Wang X; Fulvio PF; Baker GA; Veith GM; Unocic RR; Mahurin SM; Chi M; Dai S
    Chem Commun (Camb); 2010 Jul; 46(25):4487-9. PubMed ID: 20485780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of Pt/ionic liquid/graphene nanocomposite and its simultaneous determination of ascorbic acid and dopamine.
    Li F; Chai J; Yang H; Han D; Niu L
    Talanta; 2010 May; 81(3):1063-8. PubMed ID: 20298894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous electrochemical determination of glutathione and glutathione disulfide at a nanoscale copper hydroxide composite carbon ionic liquid electrode.
    Safavi A; Maleki N; Farjami E; Mahyari FA
    Anal Chem; 2009 Sep; 81(18):7538-43. PubMed ID: 19681595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ionic-liquid-assisted sonochemical synthesis of carbon-nanotube-based nanohybrids: control in the structures and interfacial characteristics.
    Park HS; Choi BG; Yang SH; Shin WH; Kang JK; Jung D; Hong WH
    Small; 2009 Aug; 5(15):1754-60. PubMed ID: 19367600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrochemical behavior of azithromycin at graphene and ionic liquid composite film modified electrode.
    Peng JY; Hou CT; Liu XX; Li HB; Hu XY
    Talanta; 2011 Oct; 86():227-32. PubMed ID: 22063535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-quality thin graphene films from fast electrochemical exfoliation.
    Su CY; Lu AY; Xu Y; Chen FR; Khlobystov AN; Li LJ
    ACS Nano; 2011 Mar; 5(3):2332-9. PubMed ID: 21309565
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of graphene-ionic liquid-chitosan composite-modified carbon molecular wire electrode for the sensitive determination of adenosine-5'-monophosphate.
    Shi F; Gong S; Xu L; Zhu H; Sun Z; Sun W
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4527-32. PubMed ID: 24094155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical gate-controlled charge transport in graphene in ionic liquid and aqueous solution.
    Chen F; Qing Q; Xia J; Li J; Tao N
    J Am Chem Soc; 2009 Jul; 131(29):9908-9. PubMed ID: 19572712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene.
    Shan C; Yang H; Song J; Han D; Ivaska A; Niu L
    Anal Chem; 2009 Mar; 81(6):2378-82. PubMed ID: 19227979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unzipping carbon nanotubes: a peeling method for the formation of graphene nanoribbons.
    Hirsch A
    Angew Chem Int Ed Engl; 2009; 48(36):6594-6. PubMed ID: 19582752
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 42.