BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 19703009)

  • 21. Improved leukemia-free survival after postconsolidation immunotherapy with histamine dihydrochloride and interleukin-2 in acute myeloid leukemia: results of a randomized phase 3 trial.
    Brune M; Castaigne S; Catalano J; Gehlsen K; Ho AD; Hofmann WK; Hogge DE; Nilsson B; Or R; Romero AI; Rowe JM; Simonsson B; Spearing R; Stadtmauer EA; Szer J; Wallhult E; Hellstrand K
    Blood; 2006 Jul; 108(1):88-96. PubMed ID: 16556892
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dynamics of cytotoxic T cell subsets during immunotherapy predicts outcome in acute myeloid leukemia.
    Sander FE; Rydström A; Bernson E; Kiffin R; Riise R; Aurelius J; Anderson H; Brune M; Foà R; Hellstrand K; Thorén FB; Martner A
    Oncotarget; 2016 Feb; 7(7):7586-96. PubMed ID: 26863635
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Impact of IL-1β and the IL-1R antagonist on relapse risk and survival in AML patients undergoing immunotherapy for remission maintenance.
    Grauers Wiktorin H; Aydin E; Christenson K; Issdisai N; Thorén FB; Hellstrand K; Martner A
    Oncoimmunology; 2021; 10(1):1944538. PubMed ID: 34367728
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Histamine dihydrochloride and interleukin-2 in the treatment of acute myeloid leukemia.
    Stadtmauer EA
    Semin Oncol; 2002 Jun; 29(3 Suppl 7):47-51. PubMed ID: 12068389
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Relapse Prevention in Acute Myeloid Leukemia: The Role of Immunotherapy with Histamine Dihydrochloride and Low-Dose Interleukin-2.
    Montesinos P; Buccisano F; Cluzeau T; Vennström L; Heuser M
    Cancers (Basel); 2024 May; 16(10):. PubMed ID: 38791903
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Histamine and cytokine therapy.
    Hellstrand K; Hermodsson S; Naredi P; Mellqvist UH; Brune M
    Acta Oncol; 1998; 37(4):347-53. PubMed ID: 9743456
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Remission maintenance in acute myeloid leukemia: impact of functional histamine H2 receptors expressed by leukemic cells.
    Aurelius J; Martner A; Brune M; Palmqvist L; Hansson M; Hellstrand K; Thoren FB
    Haematologica; 2012 Dec; 97(12):1904-8. PubMed ID: 22689678
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Maintenance therapy with histamine plus IL-2 induces a striking expansion of two CD56bright NK cell subpopulations in patients with acute myeloid leukemia and supports their activation.
    Cuapio A; Post M; Cerny-Reiterer S; Gleixner KV; Stefanzl G; Basilio J; Herndlhofer S; Sperr WR; Brons NH; Casanova E; Zimmer J; Valent P; Hofer E
    Oncotarget; 2016 Jul; 7(29):46466-46481. PubMed ID: 27341131
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Histamine in cancer immunotherapy.
    Hellstrand K; Hermodsson S; Brune M; Naredi P; Carneskog J; Mellqvist UH
    Scand J Clin Lab Invest; 1997 May; 57(3):193-202. PubMed ID: 9238754
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Immunotherapy prospects for acute myeloid leukaemia.
    Barrett AJ; Le Blanc K
    Clin Exp Immunol; 2010 Aug; 161(2):223-32. PubMed ID: 20529084
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Peptide vaccines for patients with acute myeloid leukemia.
    Schmitt M; Casalegno-Garduño R; Xu X; Schmitt A
    Expert Rev Vaccines; 2009 Oct; 8(10):1415-25. PubMed ID: 19803762
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Histamine dihydrochloride: inhibiting oxidants and synergising IL-2-mediated immune activation in the tumour microenvironment.
    Agarwala SS; Sabbagh MH
    Expert Opin Biol Ther; 2001 Sep; 1(5):869-79. PubMed ID: 11728221
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An overview of the potential strategies for NK cell-based immunotherapy for acute myeloid leukemia.
    Sinha C; Cunningham LC
    Pediatr Blood Cancer; 2016 Dec; 63(12):2078-2085. PubMed ID: 27535002
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Histamine dihydrochloride and cancer.
    Hamill FA
    Integr Cancer Ther; 2003 Mar; 2(1):91-3. PubMed ID: 12941175
    [No Abstract]   [Full Text] [Related]  

  • 35. Immunotherapeutic strategies for relapse control in acute myeloid leukemia.
    Martner A; Thorén FB; Aurelius J; Hellstrand K
    Blood Rev; 2013 Sep; 27(5):209-16. PubMed ID: 23871358
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Postconsolidation immunotherapy in leukaemia remission.
    Nelson R
    Lancet Oncol; 2006 May; 7(5):367. PubMed ID: 16696159
    [No Abstract]   [Full Text] [Related]  

  • 37. In vivo expansion of activated naive CD8+ T cells and NK cells driven by complexes of IL-2 and anti-IL-2 monoclonal antibody as novel approach of cancer immunotherapy.
    Tomala J; Chmelova H; Mrkvan T; Rihova B; Kovar M
    J Immunol; 2009 Oct; 183(8):4904-12. PubMed ID: 19801515
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Maintenance therapy in AML: The past, the present and the future.
    Molica M; Breccia M; Foa R; Jabbour E; Kadia TM
    Am J Hematol; 2019 Nov; 94(11):1254-1265. PubMed ID: 31429099
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Natural killer cell-based immunotherapy in cancer: current insights and future prospects.
    Sutlu T; Alici E
    J Intern Med; 2009 Aug; 266(2):154-81. PubMed ID: 19614820
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Expanded clinical-grade membrane-bound IL-21/4-1BBL NK cell products exhibit activity against acute myeloid leukemia in vivo.
    Zhao XY; Jiang Q; Jiang H; Hu LJ; Zhao T; Yu XX; Huang XJ
    Eur J Immunol; 2020 Sep; 50(9):1374-1385. PubMed ID: 32357256
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.