These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 19703343)
1. Trypsin as a novel potential absorption enhancer for improving the transdermal delivery of macromolecules. Li YZ; Quan YS; Zang L; Jin MN; Kamiyama F; Katsumi H; Tsutsumi S; Yamamoto A J Pharm Pharmacol; 2009 Aug; 61(8):1005-12. PubMed ID: 19703343 [TBL] [Abstract][Full Text] [Related]
2. Transdermal delivery of insulin using trypsin as a biochemical enhancer. Li YZ; Quan YS; Zang L; Jin MN; Kamiyama F; Katsumi H; Yamamoto A; Tsutsumi S Biol Pharm Bull; 2008 Aug; 31(8):1574-9. PubMed ID: 18670091 [TBL] [Abstract][Full Text] [Related]
3. Effects of pretreatment of needle puncture and sandpaper abrasion on the in vitro skin permeation of fluorescein isothiocyanate (FITC)-dextran. Wu XM; Todo H; Sugibayashi K Int J Pharm; 2006 Jun; 316(1-2):102-8. PubMed ID: 16597490 [TBL] [Abstract][Full Text] [Related]
4. Permeation pathway of macromolecules and nanospheres through skin. Todo H; Kimura E; Yasuno H; Tokudome Y; Hashimoto F; Ikarashi Y; Sugibayashi K Biol Pharm Bull; 2010; 33(8):1394-9. PubMed ID: 20686237 [TBL] [Abstract][Full Text] [Related]
5. Transdermal drug delivery by in-skin electroporation using a microneedle array. Yan K; Todo H; Sugibayashi K Int J Pharm; 2010 Sep; 397(1-2):77-83. PubMed ID: 20619329 [TBL] [Abstract][Full Text] [Related]
6. Stratum corneum permeation and percutaneous drug delivery of hydrophilic molecules enhanced by cryopneumatic and photopneumatic technologies. Sun F; Anderson R; Aguilar G J Drugs Dermatol; 2010 Dec; 9(12):1528-30. PubMed ID: 21120262 [TBL] [Abstract][Full Text] [Related]
7. Transdermal delivery of macromolecules by erbium:YAG laser. Fang JY; Lee WR; Shen SC; Wang HY; Fang CL; Hu CH J Control Release; 2004 Nov; 100(1):75-85. PubMed ID: 15491812 [TBL] [Abstract][Full Text] [Related]
8. Mechanism of the enhancement effect of n-octyl-beta-D-thioglucoside on the transdermal penetration of fluorescein isothiocyanate-labeled dextrans and the molecular weight dependence of water-soluble penetrants through stripped skin. Ogiso T; Paku T; Iwaki M; Tanino T J Pharm Sci; 1994 Dec; 83(12):1676-81. PubMed ID: 7534349 [TBL] [Abstract][Full Text] [Related]
9. Analysis of hair follicle penetration of lidocaine and fluorescein isothiocyanate-dextran 4 kDa using hair follicle-plugging method. Horita D; Yoshimoto M; Todo H; Sugibayashi K Drug Dev Ind Pharm; 2014 Mar; 40(3):345-51. PubMed ID: 24517635 [TBL] [Abstract][Full Text] [Related]
10. Molecular weight dependence on bioavailability of FITC-dextran after administration of self-dissolving micropile to rat skin. Ito Y; Ise A; Sugioka N; Takada K Drug Dev Ind Pharm; 2010 Jul; 36(7):845-51. PubMed ID: 20180657 [TBL] [Abstract][Full Text] [Related]
11. Transdermal delivery of relatively high molecular weight drugs using novel self-dissolving microneedle arrays fabricated from hyaluronic acid and their characteristics and safety after application to the skin. Liu S; Jin MN; Quan YS; Kamiyama F; Kusamori K; Katsumi H; Sakane T; Yamamoto A Eur J Pharm Biopharm; 2014 Feb; 86(2):267-76. PubMed ID: 24120887 [TBL] [Abstract][Full Text] [Related]
12. Effects of polyamidoamine (PAMAM) dendrimers on the nasal absorption of poorly absorbable drugs in rats. Dong Z; Katsumi H; Sakane T; Yamamoto A Int J Pharm; 2010 Jun; 393(1-2):244-52. PubMed ID: 20417700 [TBL] [Abstract][Full Text] [Related]
13. Transdermal delivery of macromolecules using skin electroporation. Lombry C; Dujardin N; Préat V Pharm Res; 2000 Jan; 17(1):32-7. PubMed ID: 10714605 [TBL] [Abstract][Full Text] [Related]
14. Recent advances in buccal drug delivery and absorption--in vitro and in vivo studies. Junginger HE; Hoogstraate JA; Verhoef JC J Control Release; 1999 Nov; 62(1-2):149-59. PubMed ID: 10518646 [TBL] [Abstract][Full Text] [Related]
15. Post-irradiation recovery time strongly influences fractional laser-facilitated skin absorption. Lee WR; Hsiao CY; Huang TH; Wang CL; Alalaiwe A; Chen EL; Fang JY Int J Pharm; 2019 Jun; 564():48-58. PubMed ID: 30999045 [TBL] [Abstract][Full Text] [Related]
17. Improvement of intestinal absorption of insulin and water-soluble macromolecular compounds by chitosan oligomers in rats. Gao Y; He L; Katsumi H; Sakane T; Fujita T; Yamamoto A Int J Pharm; 2008 Jul; 359(1-2):70-8. PubMed ID: 18450395 [TBL] [Abstract][Full Text] [Related]
18. Influence of molecular weight on transdermal delivery of model macromolecules using hydrogel-forming microneedles: potential to enhance the administration of novel low molecular weight biotherapeutics. Hutton ARJ; McCrudden MTC; Larrañeta E; Donnelly RF J Mater Chem B; 2020 May; 8(19):4202-4209. PubMed ID: 32292995 [TBL] [Abstract][Full Text] [Related]
19. The effect of pulse duration, power and energy of fractional Er:YAG laser for transdermal delivery of differently sized FITC dextrans. Zorec B; Škrabelj D; Marinček M; Miklavčič D; Pavšelj N Int J Pharm; 2017 Jan; 516(1-2):204-213. PubMed ID: 27818244 [TBL] [Abstract][Full Text] [Related]
20. Percutaneous penetration of fluorescein isothiocyanate-dextrans and the mechanism for enhancement effect of enhancers on the intercellular penetration. Ogiso T; Paku T; Iwaki M; Tanino T Biol Pharm Bull; 1995 Nov; 18(11):1566-71. PubMed ID: 8593481 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]