These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 19703965)

  • 1. Learning to breathe: control of the inspiratory-expiratory phase transition shifts from sensory- to central-dominated during postnatal development in rats.
    Dutschmann M; Mörschel M; Rybak IA; Dick TE
    J Physiol; 2009 Oct; 587(Pt 20):4931-48. PubMed ID: 19703965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synaptic potentials in respiratory neurones during evoked phase switching after NMDA receptor blockade in the cat.
    Pierrefiche O; Haji A; Foutz AS; Takeda R; Champagnat J; Denavit-Saubie M
    J Physiol; 1998 Apr; 508 ( Pt 2)(Pt 2):549-59. PubMed ID: 9508816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning to breathe: habituation of Hering-Breuer inflation reflex emerges with postnatal brainstem maturation.
    Dutschmann M; Bautista TG; Mörschel M; Dick TE
    Respir Physiol Neurobiol; 2014 May; 195():44-9. PubMed ID: 24566392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Habituation and desensitization of the Hering-Breuer reflex in rat.
    Siniaia MS; Young DL; Poon CS
    J Physiol; 2000 Mar; 523 Pt 2(Pt 2):479-91. PubMed ID: 10699090
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Kölliker-Fuse nucleus acts as a timekeeper for late-expiratory abdominal activity.
    Jenkin SE; Milsom WK; Zoccal DB
    Neuroscience; 2017 Apr; 348():63-72. PubMed ID: 28188852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inspiration-promoting vagal reflex under NMDA receptor blockade in anaesthetized rabbits.
    Takano K; Kato F
    J Physiol; 1999 Apr; 516 ( Pt 2)(Pt 2):571-82. PubMed ID: 10087354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inspiration-promoting vagal reflex in anaesthetized rabbits after rostral dorsolateral pons lesions.
    Takano K; Kato F
    J Physiol; 2003 Aug; 550(Pt 3):973-83. PubMed ID: 12794176
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bidirectional plasticity of pontine pneumotaxic postinspiratory drive: implication for a pontomedullary respiratory central pattern generator.
    Poon CS; Song G
    Prog Brain Res; 2014; 209():235-54. PubMed ID: 24746051
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role in the inspiratory off-switch of vagal inputs to rostral pontine inspiratory-modulated neurons.
    Cohen MI; Shaw CF
    Respir Physiol Neurobiol; 2004 Nov; 143(2-3):127-40. PubMed ID: 15519550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glutamatergic antagonism in the NTS decreases post-inspiratory drive and changes phrenic and sympathetic coupling during chemoreflex activation.
    Costa-Silva JH; Zoccal DB; Machado BH
    J Neurophysiol; 2010 Apr; 103(4):2095-106. PubMed ID: 20164386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synaptic mechanisms of inspiratory off-switching evoked by pontine pneumotaxic stimulation in cats.
    Okazaki M; Takeda R; Yamazaki H; Haji A
    Neurosci Res; 2002 Sep; 44(1):101-10. PubMed ID: 12204298
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The pontine Kölliker-Fuse nucleus gates facial, hypoglossal, and vagal upper airway related motor activity.
    Dutschmann M; Bautista TG; Trevizan-Baú P; Dhingra RR; Furuya WI
    Respir Physiol Neurobiol; 2021 Feb; 284():103563. PubMed ID: 33053424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Kölliker-Fuse nucleus gates the postinspiratory phase of the respiratory cycle to control inspiratory off-switch and upper airway resistance in rat.
    Dutschmann M; Herbert H
    Eur J Neurosci; 2006 Aug; 24(4):1071-84. PubMed ID: 16930433
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GABA(A) receptor-mediated inspiratory termination evoked by vagal stimulation in decerebrate cats.
    Haji A; Okazaki M; Takeda R
    Neuropharmacology; 1999 Sep; 38(9):1261-72. PubMed ID: 10471079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Breathing dysfunctions associated with impaired control of postinspiratory activity in Mecp2-/y knockout mice.
    Stettner GM; Huppke P; Brendel C; Richter DW; Gärtner J; Dutschmann M
    J Physiol; 2007 Mar; 579(Pt 3):863-76. PubMed ID: 17204503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The bulbar network of respiratory neurons during apneusis induced by a blockade of NMDA receptors.
    Pierrefiche O; Foutz AS; Champagnat J; Denavit-Saubié M
    Exp Brain Res; 1992; 89(3):623-39. PubMed ID: 1386575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Excitation-inhibition balance regulates the patterning of spinal and cranial inspiratory motor outputs in rats in situ.
    Dhingra RR; Furuya WI; Galán RF; Dutschmann M
    Respir Physiol Neurobiol; 2019 Aug; 266():95-102. PubMed ID: 31055189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phrenic, vagal and hypoglossal activities in rat: pre-inspiratory, inspiratory, expiratory components.
    Leiter JC; St -John WM
    Respir Physiol Neurobiol; 2004 Sep; 142(2-3):115-26. PubMed ID: 15450474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Medullary lateral tegmental field neurons influence the timing and pattern of phrenic nerve activity in cats.
    Orer HS; Gebber GL; Barman SM
    J Appl Physiol (1985); 2006 Aug; 101(2):521-30. PubMed ID: 16645195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neurophysiology of the motor output pattern generator for breathing.
    Wyman RJ
    Fed Proc; 1976 Jul; 35(9):2013-23. PubMed ID: 776702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.