BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 19704009)

  • 1. Regulation of myoblast differentiation by the nuclear envelope protein NET39.
    Liu GH; Guan T; Datta K; Coppinger J; Yates J; Gerace L
    Mol Cell Biol; 2009 Nov; 29(21):5800-12. PubMed ID: 19704009
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nuclear envelope transmembrane proteins (NETs) that are up-regulated during myogenesis.
    Chen IH; Huber M; Guan T; Bubeck A; Gerace L
    BMC Cell Biol; 2006 Oct; 7():38. PubMed ID: 17062158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overlapping functions of nuclear envelope proteins NET25 (Lem2) and emerin in regulation of extracellular signal-regulated kinase signaling in myoblast differentiation.
    Huber MD; Guan T; Gerace L
    Mol Cell Biol; 2009 Nov; 29(21):5718-28. PubMed ID: 19720741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NET37, a nuclear envelope transmembrane protein with glycosidase homology, is involved in myoblast differentiation.
    Datta K; Guan T; Gerace L
    J Biol Chem; 2009 Oct; 284(43):29666-76. PubMed ID: 19706595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Net39 protects muscle nuclei from mechanical stress during the pathogenesis of Emery-Dreifuss muscular dystrophy.
    Zhang Y; Ramirez-Martinez A; Chen K; McAnally JR; Cai C; Durbacz MZ; Chemello F; Wang Z; Xu L; Bassel-Duby R; Liu N; Olson EN
    J Clin Invest; 2023 Jul; 133(13):. PubMed ID: 37395273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tissue-Specific Gene Repositioning by Muscle Nuclear Membrane Proteins Enhances Repression of Critical Developmental Genes during Myogenesis.
    Robson MI; de Las Heras JI; Czapiewski R; Lê Thành P; Booth DG; Kelly DA; Webb S; Kerr ARW; Schirmer EC
    Mol Cell; 2016 Jun; 62(6):834-847. PubMed ID: 27264872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The nuclear envelope protein Net39 is essential for muscle nuclear integrity and chromatin organization.
    Ramirez-Martinez A; Zhang Y; Chen K; Kim J; Cenik BK; McAnally JR; Cai C; Shelton JM; Huang J; Brennan A; Evers BM; Mammen PPA; Xu L; Bassel-Duby R; Liu N; Olson EN
    Nat Commun; 2021 Jan; 12(1):690. PubMed ID: 33514739
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Negative regulation of initial steps in skeletal myogenesis by mTOR and other kinases.
    Wilson RA; Liu J; Xu L; Annis J; Helmig S; Moore G; Timmerman C; Grandori C; Zheng Y; Skapek SX
    Sci Rep; 2016 Feb; 6():20376. PubMed ID: 26847534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. IGF-II transcription in skeletal myogenesis is controlled by mTOR and nutrients.
    Erbay E; Park IH; Nuzzi PD; Schoenherr CJ; Chen J
    J Cell Biol; 2003 Dec; 163(5):931-6. PubMed ID: 14662739
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rab5a activates IRS1 to coordinate IGF-AKT-mTOR signaling and myoblast differentiation during muscle regeneration.
    Cong XX; Gao XK; Rao XS; Wen J; Liu XC; Shi YP; He MY; Shen WL; Shen Y; Ouyang H; Hu P; Low BC; Meng ZX; Ke YH; Zheng MZ; Lu LR; Liang YH; Zheng LL; Zhou YT
    Cell Death Differ; 2020 Aug; 27(8):2344-2362. PubMed ID: 32051546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of Nuclear Lamina Proteins in Myoblast Differentiation by Functional Complementation.
    Tapia O; Gerace L
    Methods Mol Biol; 2016; 1411():177-94. PubMed ID: 27147042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. β-Taxilin participates in differentiation of C2C12 myoblasts into myotubes.
    Sakane H; Makiyama T; Nogami S; Horii Y; Akasaki K; Shirataki H
    Exp Cell Res; 2016 Jul; 345(2):230-8. PubMed ID: 27231216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Leucyl-tRNA synthetase is required for the myogenic differentiation of C2C12 myoblasts, but not for hypertrophy or metabolic alteration of myotubes.
    Sato Y; Sato Y; Suzuki R; Obeng K; Yoshizawa F
    Exp Cell Res; 2018 Mar; 364(2):184-190. PubMed ID: 29425714
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel in vitro model for the assessment of postnatal myonuclear accretion.
    Kneppers A; Verdijk L; de Theije C; Corten M; Gielen E; van Loon L; Schols A; Langen R
    Skelet Muscle; 2018 Feb; 8(1):4. PubMed ID: 29444710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mitophagy regulates mitochondrial network signaling, oxidative stress, and apoptosis during myoblast differentiation.
    Baechler BL; Bloemberg D; Quadrilatero J
    Autophagy; 2019 Sep; 15(9):1606-1619. PubMed ID: 30859901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myostatin reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast differentiation and myotube size.
    Trendelenburg AU; Meyer A; Rohner D; Boyle J; Hatakeyama S; Glass DJ
    Am J Physiol Cell Physiol; 2009 Jun; 296(6):C1258-70. PubMed ID: 19357233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fibroblast growth factor inducible 14 (Fn14) is required for the expression of myogenic regulatory factors and differentiation of myoblasts into myotubes. Evidence for TWEAK-independent functions of Fn14 during myogenesis.
    Dogra C; Hall SL; Wedhas N; Linkhart TA; Kumar A
    J Biol Chem; 2007 May; 282(20):15000-10. PubMed ID: 17383968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Guanidinoacetic Acid Regulates Myogenic Differentiation and Muscle Growth Through miR-133a-3p and miR-1a-3p Co-mediated Akt/mTOR/S6K Signaling Pathway.
    Wang Y; Ma J; Qiu W; Zhang J; Feng S; Zhou X; Wang X; Jin L; Long K; Liu L; Xiao W; Tang Q; Zhu L; Jiang Y; Li X; Li M
    Int J Mol Sci; 2018 Sep; 19(9):. PubMed ID: 30235878
    [TBL] [Abstract][Full Text] [Related]  

  • 19. miR-22 regulates C2C12 myoblast proliferation and differentiation by targeting TGFBR1.
    Wang H; Zhang Q; Wang B; Wu W; Wei J; Li P; Huang R
    Eur J Cell Biol; 2018 May; 97(4):257-268. PubMed ID: 29588073
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TGM2 positively regulates myoblast differentiation via enhancing the mTOR signaling.
    Wang D; Zhao D; Li Y; Dai T; Liu F; Yan C
    Biochim Biophys Acta Mol Cell Res; 2022 Mar; 1869(3):119173. PubMed ID: 34902478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.