BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 19704015)

  • 1. Adaptive divergence in experimental populations of Pseudomonas fluorescens. IV. Genetic constraints guide evolutionary trajectories in a parallel adaptive radiation.
    McDonald MJ; Gehrig SM; Meintjes PL; Zhang XX; Rainey PB
    Genetics; 2009 Nov; 183(3):1041-53. PubMed ID: 19704015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive divergence in experimental populations of Pseudomonas fluorescens. III. Mutational origins of wrinkly spreader diversity.
    Bantinaki E; Kassen R; Knight CG; Robinson Z; Spiers AJ; Rainey PB
    Genetics; 2007 May; 176(1):441-53. PubMed ID: 17339222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive divergence in experimental populations of Pseudomonas fluorescens. V. Insight into the niche specialist fuzzy spreader compels revision of the model Pseudomonas radiation.
    Ferguson GC; Bertels F; Rainey PB
    Genetics; 2013 Dec; 195(4):1319-35. PubMed ID: 24077305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive divergence in experimental populations of Pseudomonas fluorescens. II. Role of the GGDEF regulator WspR in evolution and development of the wrinkly spreader phenotype.
    Goymer P; Kahn SG; Malone JG; Gehrig SM; Spiers AJ; Rainey PB
    Genetics; 2006 Jun; 173(2):515-26. PubMed ID: 16624907
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive divergence in experimental populations of Pseudomonas fluorescens. I. Genetic and phenotypic bases of wrinkly spreader fitness.
    Spiers AJ; Kahn SG; Bohannon J; Travisano M; Rainey PB
    Genetics; 2002 May; 161(1):33-46. PubMed ID: 12019221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting mutational routes to new adaptive phenotypes.
    Lind PA; Libby E; Herzog J; Rainey PB
    Elife; 2019 Jan; 8():. PubMed ID: 30616716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptive radiation of Pseudomonas fluorescens SBW25 in experimental microcosms provides an understanding of the evolutionary ecology and molecular biology of A-L interface biofilm formation.
    Koza A; Kusmierska A; McLaughlin K; Moshynets O; Spiers AJ
    FEMS Microbiol Lett; 2017 Jul; 364(12):. PubMed ID: 28535292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental evolution reveals hidden diversity in evolutionary pathways.
    Lind PA; Farr AD; Rainey PB
    Elife; 2015 Mar; 4():. PubMed ID: 25806684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Forecasting of phenotypic and genetic outcomes of experimental evolution in Pseudomonas protegens.
    Pentz JT; Lind PA
    PLoS Genet; 2021 Aug; 17(8):e1009722. PubMed ID: 34351900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolutionary convergence in experimental Pseudomonas populations.
    Lind PA; Farr AD; Rainey PB
    ISME J; 2017 Mar; 11(3):589-600. PubMed ID: 27911438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wrinkly-Spreader fitness in the two-dimensional agar plate microcosm: maladaptation, compensation and ecological success.
    Spiers AJ
    PLoS One; 2007 Aug; 2(8):e740. PubMed ID: 17710140
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive evolution by spontaneous domain fusion and protein relocalization.
    Farr AD; Remigi P; Rainey PB
    Nat Ecol Evol; 2017 Oct; 1(10):1562-1568. PubMed ID: 29185504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The structure-function relationship of WspR, a Pseudomonas fluorescens response regulator with a GGDEF output domain.
    Malone JG; Williams R; Christen M; Jenal U; Spiers AJ; Rainey PB
    Microbiology (Reading); 2007 Apr; 153(Pt 4):980-994. PubMed ID: 17379708
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three biofilm types produced by a model pseudomonad are differentiated by structural characteristics and fitness advantage.
    Koza A; Jerdan R; Cameron S; Spiers AJ
    Microbiology (Reading); 2020 Aug; 166(8):707-716. PubMed ID: 32520698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environmental modification and niche construction: developing O2 gradients drive the evolution of the Wrinkly Spreader.
    Koza A; Moshynets O; Otten W; Spiers AJ
    ISME J; 2011 Apr; 5(4):665-73. PubMed ID: 20962880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Causes and Biophysical Consequences of Cellulose Production by Pseudomonas fluorescens SBW25 at the Air-Liquid Interface.
    Ardré M; Dufour D; Rainey PB
    J Bacteriol; 2019 Sep; 201(18):. PubMed ID: 31085696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of selection environment on the probability of parallel evolution.
    Bailey SF; Rodrigue N; Kassen R
    Mol Biol Evol; 2015 Jun; 32(6):1436-48. PubMed ID: 25761765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The evolution of a pleiotropic fitness tradeoff in Pseudomonas fluorescens.
    MacLean RC; Bell G; Rainey PB
    Proc Natl Acad Sci U S A; 2004 May; 101(21):8072-7. PubMed ID: 15150419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive radiation in a heterogeneous environment.
    Rainey PB; Travisano M
    Nature; 1998 Jul; 394(6688):69-72. PubMed ID: 9665128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental evolution of bet hedging.
    Beaumont HJ; Gallie J; Kost C; Ferguson GC; Rainey PB
    Nature; 2009 Nov; 462(7269):90-3. PubMed ID: 19890329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.