These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 19704144)

  • 21. Application of the WFD cost proportionality principle to diffuse pollution mitigation: a case study for Scottish Lochs.
    Vinten AJ; Martin-Ortega J; Glenk K; Booth P; Balana BB; MacLeod M; Lago M; Moran D; Jones M
    J Environ Manage; 2012 Apr; 97():28-37. PubMed ID: 22325580
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Integrated assessment of nitrogen losses from agriculture in EU-27 using MITERRA-EUROPE.
    Velthof GL; Oudendag D; Witzke HP; Asman WA; Klimont Z; Oenema O
    J Environ Qual; 2009; 38(2):402-17. PubMed ID: 19202011
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Estimating costs and potentials of different methods to reduce the Swedish phosphorus load from agriculture to surface water.
    Malmaeus JM; Karlsson OM
    Sci Total Environ; 2010 Jan; 408(3):473-9. PubMed ID: 19896159
    [TBL] [Abstract][Full Text] [Related]  

  • 24. International phosphorus workshop: diffuse phosphorus loss to surface water bodies--risk assessment, mitigation options, and ecological effects in river basins.
    Kronvang B; Rubaek GH; Heckrath G
    J Environ Qual; 2009; 38(5):1924-9. PubMed ID: 19704136
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Phytoextraction of phosphorus-enriched grassland soils.
    van der Salm C; Chardon WJ; Koopmans GF; van Middelkoop JC; Ehlert PA
    J Environ Qual; 2009; 38(2):751-61. PubMed ID: 19244497
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tackling agricultural diffuse pollution: What might uptake of farmer-preferred measures deliver for emissions to water and air?
    Collins AL; Zhang YS; Winter M; Inman A; Jones JI; Johnes PJ; Cleasby W; Vrain E; Lovett A; Noble L
    Sci Total Environ; 2016 Mar; 547():269-281. PubMed ID: 26789365
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Economic analysis of best management practices to reduce watershed phosphorus losses.
    Rao NS; Easton ZM; Lee DR; Steenhuis TS
    J Environ Qual; 2012; 41(3):855-64. PubMed ID: 22565267
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluating the success of phosphorus management from field to watershed.
    Sharpley AN; Kleinman PJ; Jordan P; Bergström L; Allen AL
    J Environ Qual; 2009; 38(5):1981-8. PubMed ID: 19704141
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of phosphorus sources in rural watersheds.
    Withers PJ; Jarvie HP; Hodgkinson RA; Palmer-Felgate EJ; Bates A; Neal M; Howells R; Withers CM; Wickham HD
    J Environ Qual; 2009; 38(5):1998-2011. PubMed ID: 19704143
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Uncertainties in data and models to describe event dynamics of agricultural sediment and phosphorus transfer.
    Krueger T; Quinton JN; Freer J; Macleod CJ; Bilotta GS; Brazier RE; Butler P; Haygarth PM
    J Environ Qual; 2009; 38(3):1137-48. PubMed ID: 19398511
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Controls on catchment-scale patterns of phosphorus in soil, streambed sediment, and stream water.
    van der Perk M; Owens PN; Deeks LK; Rawlins BG; Haygarth PM; Beven KJ
    J Environ Qual; 2007; 36(3):694-708. PubMed ID: 17412905
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mitigation options to reduce phosphorus losses from the agricultural sector and improve surface water quality: a review.
    Schoumans OF; Chardon WJ; Bechmann ME; Gascuel-Odoux C; Hofman G; Kronvang B; Rubæk GH; Ulén B; Dorioz JM
    Sci Total Environ; 2014 Jan; 468-469():1255-66. PubMed ID: 24060142
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Agricultural drainage ditches mitigate phosphorus loads as a function of hydrological variability.
    Kröger R; Holland MM; Moore MT; Cooper CM
    J Environ Qual; 2008; 37(1):107-13. PubMed ID: 18178883
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Impact of selected agricultural management options on the reduction of nitrogen loads in three representative meso scale catchments in Central Germany.
    Rode M; Thiel E; Franko U; Wenk G; Hesser F
    Sci Total Environ; 2009 May; 407(11):3459-72. PubMed ID: 19261322
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The effect of the redox-potential on the retention of phosphorus in a small constructed wetland.
    Braskerud BC; Hartnik T; Lovstad O
    Water Sci Technol; 2005; 51(3-4):127-34. PubMed ID: 15850182
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mitigation options for sediment and phosphorus loss from winter-sown Arable Crops.
    Deasy C; Quinton JN; Silgram M; Bailey AP; Jackson B; Stevens CJ
    J Environ Qual; 2009; 38(5):2121-30. PubMed ID: 19704154
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Estimating the mitigation of anthropogenic loss of phosphorus in New Zealand grassland catchments.
    McDowell RW
    Sci Total Environ; 2014 Jan; 468-469():1178-86. PubMed ID: 23579204
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Combined monitoring and modeling indicate the most effective agricultural best management practices.
    Easton ZM; Walter MT; Steenhuis TS
    J Environ Qual; 2008; 37(5):1798-809. PubMed ID: 18689741
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phosphorus retention in riparian buffers: review of their efficiency.
    Hoffmann CC; Kjaergaard C; Uusi-Kämppä J; Hansen HC; Kronvang B
    J Environ Qual; 2009; 38(5):1942-55. PubMed ID: 19704138
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mapping areas at risk of diffuse phosphorus losses to water: a pilot study of Lake Haderslev Dam, Denmark.
    Andersen HE; Heckrath G; Thodsen H
    Water Sci Technol; 2008; 58(11):2173-8. PubMed ID: 19092193
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.