These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 19704146)

  • 21. A one-electron oxidation of carcinogenic nonaminoazo dye Sudan I by horseradish peroxidase.
    Semanska M; Dracinsky M; Martinek V; Hudecek J; Hodek P; Frei E; Stiborova M
    Neuro Endocrinol Lett; 2008 Oct; 29(5):712-6. PubMed ID: 18987613
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Removal enhancement of 1-naphthol and 1-naphthylamine in single and binary aqueous phase by acid-basic interactions with polymer adsorbents.
    Zhang W; Hong C; Pan B; Xu Z; Zhang Q; Lv L
    J Hazard Mater; 2008 Oct; 158(2-3):293-9. PubMed ID: 18342440
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Removal of naphthols and analogues by the combined use of an oxidoreductase polyphenol oxidase and a biopolymer chitosan from aqueous solutions.
    Kimura Y; Gotoh A; Shinozaki F; Kashiwada A; Yamada K
    Environ Technol; 2014; 35(21-24):2910-9. PubMed ID: 25189838
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Oxidative degradation of Remazol Turquoise Blue G 133 by soybean peroxidase.
    Marchis T; Avetta P; Bianco-Prevot A; Fabbri D; Viscardi G; Laurenti E
    J Inorg Biochem; 2011 Feb; 105(2):321-7. PubMed ID: 21194634
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Enzymatic polymerization of coniferyl alcohol in the presence of cyclodextrins.
    Nakamura R; Matsushita Y; Umemoto K; Usuki A; Fukushima K
    Biomacromolecules; 2006 Jun; 7(6):1929-34. PubMed ID: 16768416
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Peroxidase oxidation of phenols].
    Davidenko TI
    Prikl Biokhim Mikrobiol; 2004; 40(6):625-9. PubMed ID: 15609850
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Numerically simulated pH-induced reactivation of catalytic activity of horseradish peroxidase.
    Popovic-Bijelić A; Bijelić G; Kolar-Anić L; Vukojević V
    Ann N Y Acad Sci; 2005 Jun; 1048():457-60. PubMed ID: 16154977
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Direct photooxidation and xanthene-sensitized oxidation of naphthols: quantum yields and mechanism.
    Oelgemöller M; Mattay J; Görner H
    J Phys Chem A; 2011 Jan; 115(3):280-5. PubMed ID: 21162586
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Research on the application of horseradish peroxidase and hydrogen peroxide to the oil removal of oily water.
    Li ZL; Liu W; Chen XF; Shang WL
    Water Sci Technol; 2009; 59(9):1751-8. PubMed ID: 19448310
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photochemical transformation of 1-naphthol in aerated aqueous solution.
    Brahmia O; Richard C
    Photochem Photobiol Sci; 2005 Jun; 4(6):454-8. PubMed ID: 15920628
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phenols removal by immobilized horseradish peroxidase.
    Alemzadeh I; Nejati S
    J Hazard Mater; 2009 Jul; 166(2-3):1082-6. PubMed ID: 19144465
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Abiotic transformation of catechol and 1-naphthol in aqueous solution-influence of environmental factors.
    Borraccino R; Kharoune M; Giot R; Agathos SN; Nyns EJ; Naveau HP; Pauss A
    Water Res; 2001 Oct; 35(15):3729-37. PubMed ID: 11561636
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Formation of reactive halide species by myeloperoxidase and eosinophil peroxidase.
    Spalteholz H; Panasenko OM; Arnhold J
    Arch Biochem Biophys; 2006 Jan; 445(2):225-34. PubMed ID: 16111649
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synergistic degradation of 2-naphthol by Fusarium proliferatum and Bacillus subtilis in wastewater.
    Zang S; Lian B
    J Hazard Mater; 2009 Jul; 166(1):33-8. PubMed ID: 19070430
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biocatalytic oxidation of bisphenol A in a reverse micelle system using horseradish peroxidase.
    Hong-Mei L; Nicell JA
    Bioresour Technol; 2008 Jul; 99(10):4428-37. PubMed ID: 17928223
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A comparative study of free and immobilized soybean and horseradish peroxidases for 4-chlorophenol removal: protective effects of immobilization.
    Bódalo A; Bastida J; Máximo MF; Montiel MC; Gómez M; Murcia MD
    Bioprocess Biosyst Eng; 2008 Oct; 31(6):587-93. PubMed ID: 18270748
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A novel solution for hydroxylated PAHs removal by oxidative coupling reaction using Mn oxide.
    Kang KH; Lim DM; Shin HS
    Water Sci Technol; 2008; 58(1):171-8. PubMed ID: 18653951
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A novel membrane-based process to isolate peroxidase from horseradish roots: optimization of operating parameters.
    Liu J; Yang B; Chen C
    Bioprocess Biosyst Eng; 2013 Feb; 36(2):251-7. PubMed ID: 22773175
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of pH on horseradish peroxidase-catalyzed oxidation of melatonin: production of N1-acetyl-N2-5-methoxykynuramine versus radical-mediated degradation.
    Ximenes VF; Fernandes JR; Bueno VB; Catalani LH; de Oliveira GH; Machado RG
    J Pineal Res; 2007 Apr; 42(3):291-6. PubMed ID: 17349028
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Application of immobilized horseradish peroxidase onto modified acrylonitrile copolymer membrane in removing of phenol from water.
    Vasileva N; Godjevargova T; Ivanova D; Gabrovska K
    Int J Biol Macromol; 2009 Mar; 44(2):190-4. PubMed ID: 19133289
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.