These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
750 related articles for article (PubMed ID: 19704147)
1. Evaluation of the efficiency of a phytostabilization process with biological indicators of soil health. Epelde L; Becerril JM; Mijangos I; Garbisu C J Environ Qual; 2009; 38(5):2041-9. PubMed ID: 19704147 [TBL] [Abstract][Full Text] [Related]
2. Influence of fly ash aided phytostabilisation of Pb, Cd and Zn highly contaminated soils on Lolium perenne and Trifolium repens metal transfer and physiological stress. Lopareva-Pohu A; Verdin A; Garçon G; Lounès-Hadj Sahraoui A; Pourrut B; Debiane D; Waterlot C; Laruelle F; Bidar G; Douay F; Shirali P Environ Pollut; 2011 Jun; 159(6):1721-9. PubMed ID: 21421281 [TBL] [Abstract][Full Text] [Related]
3. Seasonal and annual variations of metal uptake, bioaccumulation, and toxicity in Trifolium repens and Lolium perenne growing in a heavy metal-contaminated field. Bidar G; Pruvot C; Garçon G; Verdin A; Shirali P; Douay F Environ Sci Pollut Res Int; 2009 Jan; 16(1):42-53. PubMed ID: 18594892 [TBL] [Abstract][Full Text] [Related]
4. Organic residues as immobilizing agents in aided phytostabilization: (I) effects on soil chemical characteristics. Alvarenga P; Gonçalves AP; Fernandes RM; de Varennes A; Vallini G; Duarte E; Cunha-Queda AC Chemosphere; 2009 Mar; 74(10):1292-300. PubMed ID: 19118864 [TBL] [Abstract][Full Text] [Related]
5. Conventional crops and organic amendments for Pb, Cd and Zn treatment at a severely contaminated site. Pichtel J; Bradway DJ Bioresour Technol; 2008 Mar; 99(5):1242-51. PubMed ID: 17475483 [TBL] [Abstract][Full Text] [Related]
6. Phytoavailability and fractionation of lead and manganese in a contaminated soil after application of three amendments. Padmavathiamma PK; Li LY Bioresour Technol; 2010 Jul; 101(14):5667-76. PubMed ID: 20219365 [TBL] [Abstract][Full Text] [Related]
7. Phytostabilization of copper mine tailings with biosolids: implications for metal uptake and productivity of Lolium perenne. Santibáñez C; Verdugo C; Ginocchio R Sci Total Environ; 2008 May; 395(1):1-10. PubMed ID: 18342913 [TBL] [Abstract][Full Text] [Related]
8. Effects of soil amendments on the extractability and speciation of cadmium, lead, and copper in a contaminated soil. Lin D; Zhou Q Bull Environ Contam Toxicol; 2009 Jul; 83(1):136-40. PubMed ID: 19381428 [TBL] [Abstract][Full Text] [Related]
9. Effect of amendments on phytoavailability and fractionation of copper and zinc in a contaminated soil. Padmavathiamma PK; Li LY Int J Phytoremediation; 2010 Sep; 12(7):697-715. PubMed ID: 21166277 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of composts and liming materials in the phytostabilization of a mine soil using perennial ryegrass. Alvarenga P; Gonçalves AP; Fernandes RM; de Varennes A; Vallini G; Duarte E; Cunha-Queda AC Sci Total Environ; 2008 Nov; 406(1-2):43-56. PubMed ID: 18799197 [TBL] [Abstract][Full Text] [Related]
11. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Yoon J; Cao X; Zhou Q; Ma LQ Sci Total Environ; 2006 Sep; 368(2-3):456-64. PubMed ID: 16600337 [TBL] [Abstract][Full Text] [Related]
12. Zinc, cadmium and lead accumulation and characteristics of rhizosphere microbial population associated with hyperaccumulator Sedum alfredii Hance under natural conditions. Long XX; Zhang YG; Jun D; Zhou Q Bull Environ Contam Toxicol; 2009 Apr; 82(4):460-7. PubMed ID: 19183820 [TBL] [Abstract][Full Text] [Related]
13. Efficacy of biosolids in assisted phytostabilization of metalliferous acidic sandy soils with five grass species. Kacprzak M; Grobelak A; Grosser A; Prasad MN Int J Phytoremediation; 2014; 16(6):593-608. PubMed ID: 24912245 [TBL] [Abstract][Full Text] [Related]
14. Organic residues as immobilizing agents in aided phytostabilization: (II) effects on soil biochemical and ecotoxicological characteristics. Alvarenga P; Palma P; Gonçalves AP; Fernandes RM; de Varennes A; Vallini G; Duarte E; Cunha-Queda AC Chemosphere; 2009 Mar; 74(10):1301-8. PubMed ID: 19091381 [TBL] [Abstract][Full Text] [Related]
15. Behavior of Trifolium repens and Lolium perenne growing in a heavy metal contaminated field: Plant metal concentration and phytotoxicity. Bidar G; Garçon G; Pruvot C; Dewaele D; Cazier F; Douay F; Shirali P Environ Pollut; 2007 Jun; 147(3):546-53. PubMed ID: 17141383 [TBL] [Abstract][Full Text] [Related]
16. Effect of biosolid incorporation to mollisol soils on Cr, Cu, Ni, Pb, and Zn fractionation, and relationship with their bioavailability. Guerra P; Ahumada I; Carrasco A Chemosphere; 2007 Aug; 68(11):2021-7. PubMed ID: 17418882 [TBL] [Abstract][Full Text] [Related]
17. Remediation of metal contaminated soil with mineral-amended composts. van Herwijnen R; Hutchings TR; Al-Tabbaa A; Moffat AJ; Johns ML; Ouki SK Environ Pollut; 2007 Dec; 150(3):347-54. PubMed ID: 17399876 [TBL] [Abstract][Full Text] [Related]
18. Fungal inoculation and elevated CO2 mediate growth of Lolium mutiforum and Phytolacca americana, metal uptake, and metal bioavailability in metal-contaminated soil: evidence from DGT measurement. Song N; Wang F; Zhang C; Tang S; Guo J; Ju X; Smith DL Int J Phytoremediation; 2013; 15(3):268-82. PubMed ID: 23488012 [TBL] [Abstract][Full Text] [Related]
19. Phytostabilization of a metal contaminated sandy soil. II: Influence of compost and/or inorganic metal immobilizing soil amendments on metal leaching. Ruttens A; Colpaert JV; Mench M; Boisson J; Carleer R; Vangronsveld J Environ Pollut; 2006 Nov; 144(2):533-9. PubMed ID: 16530308 [TBL] [Abstract][Full Text] [Related]
20. Lumbricus terrestris L. activity increases the availability of metals and their accumulation in maize and barley. Ruiz E; Alonso-Azcárate J; Rodríguez L Environ Pollut; 2011 Mar; 159(3):722-8. PubMed ID: 21190761 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]