These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 1970434)
1. Catalytic mechanism of fungal glucoamylase as defined by mutagenesis of Asp176, Glu179 and Glu180 in the enzyme from Aspergillus awamori. Sierks MR; Ford C; Reilly PJ; Svensson B Protein Eng; 1990 Jan; 3(3):193-8. PubMed ID: 1970434 [TBL] [Abstract][Full Text] [Related]
2. Substrate binding mechanism of Glu180-->Gln, Asp176-->Asn, and wild-type glucoamylases from Aspergillus niger. Christensen U; Olsen K; Stoffer BB; Svensson B Biochemistry; 1996 Nov; 35(47):15009-18. PubMed ID: 8942667 [TBL] [Abstract][Full Text] [Related]
3. Functional roles and subsite locations of Leu177, Trp178 and Asn182 of Aspergillus awamori glucoamylase determined by site-directed mutagenesis. Sierks MR; Ford C; Reilly PJ; Svensson B Protein Eng; 1993 Jan; 6(1):75-9. PubMed ID: 8433972 [TBL] [Abstract][Full Text] [Related]
4. Functional roles of the invariant aspartic acid 55, tyrosine 306, and aspartic acid 309 in glucoamylase from Aspergillus awamori studied by mutagenesis. Sierks MR; Svensson B Biochemistry; 1993 Feb; 32(4):1113-7. PubMed ID: 8424940 [TBL] [Abstract][Full Text] [Related]
5. Cassette mutagenesis of Aspergillus awamori glucoamylase near its general acid residue to probe its catalytic and pH properties. Bakir U; Coutinho PM; Sullivan PA; Ford C; Reilly PJ Protein Eng; 1993 Nov; 6(8):939-46. PubMed ID: 8309943 [TBL] [Abstract][Full Text] [Related]
6. Catalytic mechanism of glucoamylase probed by mutagenesis in conjunction with hydrolysis of alpha-D-glucopyranosyl fluoride and maltooligosaccharides. Sierks MR; Svensson B Biochemistry; 1996 Feb; 35(6):1865-71. PubMed ID: 8639668 [TBL] [Abstract][Full Text] [Related]
7. Site-directed mutagenesis at the active site Trp120 of Aspergillus awamori glucoamylase. Sierks MR; Ford C; Reilly PJ; Svensson B Protein Eng; 1989 Aug; 2(8):621-5. PubMed ID: 2510150 [TBL] [Abstract][Full Text] [Related]
8. Enzymatic properties of the cysteinesulfinic acid derivative of the catalytic-base mutant Glu400-->Cys of glucoamylase from Aspergillus awamori. Fierobe HP; Clarke AJ; Tull D; Svensson B Biochemistry; 1998 Mar; 37(11):3753-9. PubMed ID: 9521694 [TBL] [Abstract][Full Text] [Related]
9. Some details of the reaction mechanism of glucoamylase from Aspergillus niger--kinetic and structural studies on Trp52-->Phe and Trp317-->Phe mutants. Christensen T; Stoffer BB; Svensson B; Christensen U Eur J Biochem; 1997 Dec; 250(3):638-45. PubMed ID: 9461285 [TBL] [Abstract][Full Text] [Related]
10. Energetic and mechanistic studies of glucoamylase using molecular recognition of maltose OH groups coupled with site-directed mutagenesis. Sierks MR; Svensson B Biochemistry; 2000 Jul; 39(29):8585-92. PubMed ID: 10913265 [TBL] [Abstract][Full Text] [Related]
11. Functional and structural roles of the highly conserved Trp120 loop region of glucoamylase from Aspergillus awamori. Natarajan S; Sierks MR Biochemistry; 1996 Mar; 35(9):3050-8. PubMed ID: 8608145 [TBL] [Abstract][Full Text] [Related]
12. Mutations to alter Aspergillus awamori glucoamylase selectivity. I. Tyr48Phe49-->Trp, Tyr116-->Trp, Tyr175-->Phe, Arg241-->Lys, Ser411-->Ala and Ser411-->Gly. Fang TY; Coutinho PM; Reilly PJ; Ford C Protein Eng; 1998 Feb; 11(2):119-26. PubMed ID: 9605546 [TBL] [Abstract][Full Text] [Related]
13. Protein engineering of Aspergillus awamori glucoamylase to increase its pH optimum. Fang TY; Ford C Protein Eng; 1998 May; 11(5):383-8. PubMed ID: 9681871 [TBL] [Abstract][Full Text] [Related]
14. Site-directed mutagenesis of the catalytic base glutamic acid 400 in glucoamylase from Aspergillus niger and of tyrosine 48 and glutamine 401, both hydrogen-bonded to the gamma-carboxylate group of glutamic acid 400. Frandsen TP; Dupont C; Lehmbeck J; Stoffer B; Sierks MR; Honzatko RB; Svensson B Biochemistry; 1994 Nov; 33(46):13808-16. PubMed ID: 7947792 [TBL] [Abstract][Full Text] [Related]
15. Mutational analysis of the roles in catalysis and substrate recognition of arginines 54 and 305, aspartic acid 309, and tryptophan 317 located at subsites 1 and 2 in glucoamylase from Aspergillus niger. Frandsen TP; Christensen T; Stoffer B; Lehmbeck J; Dupont C; Honzatko RB; Svensson B Biochemistry; 1995 Aug; 34(32):10162-9. PubMed ID: 7640270 [TBL] [Abstract][Full Text] [Related]
16. Kinetic identification of a hydrogen bonding pair in the glucoamylase-maltose transition state complex. Sierks MR; Svensson B Protein Eng; 1992 Mar; 5(2):185-8. PubMed ID: 1350675 [TBL] [Abstract][Full Text] [Related]
17. Restoration of catalytic activity beyond wild-type level in glucoamylase from Aspergillus awamori by oxidation of the Glu400-->Cys catalytic-base mutant to cysteinesulfinic acid. Fierobe HP; Mirgorodskaya E; McGuire KA; Roepstorff P; Svensson B; Clarke AJ Biochemistry; 1998 Mar; 37(11):3743-52. PubMed ID: 9521693 [TBL] [Abstract][Full Text] [Related]
18. Structure and energetics of the glucoamylase-isomaltose transition-state complex probed by using modeling and deoxygenated substrates coupled with site-directed mutagenesis. Frandsen TP; Stoffer BB; Palcic MM; Hof S; Svensson B J Mol Biol; 1996 Oct; 263(1):79-89. PubMed ID: 8890914 [TBL] [Abstract][Full Text] [Related]
19. Identification of enzyme-substrate and enzyme-product complexes in the catalytic mechanism of glucoamylase from Aspergillus awamori. Natarajan SK; Sierks MR Biochemistry; 1996 Dec; 35(48):15269-79. PubMed ID: 8952477 [TBL] [Abstract][Full Text] [Related]
20. Mutations to alter Aspergillus awamori glucoamylase selectivity. III. Asn20-->Cys/Ala27-->Cys, Ala27-->Pro, Ser30-->Pro, Lys108-->Arg, Lys108-->Met, Gly137-->Ala, 311-314 Loop, Tyr312-->Trp and Ser436-->Pro. Liu HL; Coutinho PM; Ford C; Reilly PJ Protein Eng; 1998 May; 11(5):389-98. PubMed ID: 9681872 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]