These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 1970434)
21. Mutational modulation of substrate bond-type specificity and thermostability of glucoamylase from Aspergillus awamori by replacement with short homologue active site sequences and thiol/disulfide engineering. Fierobe HP; Stoffer BB; Frandsen TP; Svensson B Biochemistry; 1996 Jul; 35(26):8696-704. PubMed ID: 8679632 [TBL] [Abstract][Full Text] [Related]
22. Substitution of asparagine residues in Aspergillus awamori glucoamylase by site-directed mutagenesis to eliminate N-glycosylation and inactivation by deamidation. Chen HM; Ford C; Reilly PJ Biochem J; 1994 Jul; 301 ( Pt 1)(Pt 1):275-81. PubMed ID: 8037681 [TBL] [Abstract][Full Text] [Related]
23. Identification of carboxylic acid residues in glucoamylase G2 from Aspergillus niger that participate in catalysis and substrate binding. Svensson B; Clarke AJ; Svendsen I; Møller H Eur J Biochem; 1990 Feb; 188(1):29-38. PubMed ID: 2108020 [TBL] [Abstract][Full Text] [Related]
24. Protein engineering of the relative specificity of glucoamylase from Aspergillus awamori based on sequence similarities between starch-degrading enzymes. Sierks MR; Svensson B Protein Eng; 1994 Dec; 7(12):1479-84. PubMed ID: 7716159 [TBL] [Abstract][Full Text] [Related]
25. Binding of isomaltose and maltose to the glucoamylase from Aspergillus niger, as studied by fluorescence spectrophotometry and steady-state kinetics. Ohnishi M; Matsumoto T; Yamanaka T; Hiromi K Carbohydr Res; 1990 Sep; 204():187-96. PubMed ID: 2279245 [TBL] [Abstract][Full Text] [Related]
26. Mutations to alter Aspergillus awamori glucoamylase selectivity. II. Mutation of residues 119 and 121. Fang TY; Honzatko RB; Reilly PJ; Ford C Protein Eng; 1998 Feb; 11(2):127-33. PubMed ID: 9605547 [TBL] [Abstract][Full Text] [Related]
27. Minimizing nonproductive substrate binding: a new look at glucoamylase subsite affinities. Natarajan SK; Sierks MR Biochemistry; 1997 Dec; 36(48):14946-55. PubMed ID: 9398219 [TBL] [Abstract][Full Text] [Related]
28. Refined structure for the complex of acarbose with glucoamylase from Aspergillus awamori var. X100 to 2.4-A resolution. Aleshin AE; Firsov LM; Honzatko RB J Biol Chem; 1994 Jun; 269(22):15631-9. PubMed ID: 8195212 [TBL] [Abstract][Full Text] [Related]
29. Reaction mechanisms of Trp120-->Phe and wild-type glucoamylases from Aspergillus niger. Interactions with maltooligodextrins and acarbose. Olsen K; Christensen U; Sierks MR; Svensson B Biochemistry; 1993 Sep; 32(37):9686-93. PubMed ID: 8373772 [TBL] [Abstract][Full Text] [Related]
30. Cloning, heterologous expression, and enzymatic characterization of a thermostable glucoamylase from Talaromyces emersonii. Nielsen BR; Lehmbeck J; Frandsen TP Protein Expr Purif; 2002 Oct; 26(1):1-8. PubMed ID: 12356463 [TBL] [Abstract][Full Text] [Related]
31. Glucoamylase mutants in the conserved active-site segment Trp170-Tyr175 located at a distance from the site of catalysis. Stoffer BB; Dupont C; Frandsen TP; Lehmbeck J; Svensson B Protein Eng; 1997 Jan; 10(1):81-7. PubMed ID: 9051738 [TBL] [Abstract][Full Text] [Related]
32. Identification and elimination by site-directed mutagenesis of thermolabile aspartyl bonds in Aspergillus awamori glucoamylase. Chen HM; Ford C; Reilly PJ Protein Eng; 1995 Jun; 8(6):575-82. PubMed ID: 8532682 [TBL] [Abstract][Full Text] [Related]
33. Physicochemical characterisation of the two active site mutants Trp(52)-->Phe and Asp(55)-->Val of glucoamylase from Aspergillus niger. Christensen T; Frandsen TP; Kaarsholm NC; Svensson B; Sigurskjold BW Biochim Biophys Acta; 2002 Dec; 1601(2):163-71. PubMed ID: 12445478 [TBL] [Abstract][Full Text] [Related]
35. Stopped-flow fluorescence and steady-state kinetic studies of ligand-binding reactions of glucoamylase from Aspergillus niger. Olsen K; Svensson B; Christensen U Eur J Biochem; 1992 Oct; 209(2):777-84. PubMed ID: 1425682 [TBL] [Abstract][Full Text] [Related]
36. Identification of glutamic acid 204 and aspartic acid 200 in chitinase A1 of Bacillus circulans WL-12 as essential residues for chitinase activity. Watanabe T; Kobori K; Miyashita K; Fujii T; Sakai H; Uchida M; Tanaka H J Biol Chem; 1993 Sep; 268(25):18567-72. PubMed ID: 8103047 [TBL] [Abstract][Full Text] [Related]
37. Structure-function relationships in the catalytic and starch binding domains of glucoamylase. Coutinho PM; Reilly PJ Protein Eng; 1994 Mar; 7(3):393-400. PubMed ID: 8177888 [TBL] [Abstract][Full Text] [Related]
38. Roles of the aromatic side chains in the binding of substrates, inhibitors, and cyclomalto-oligosaccharides to the glucoamylase from Aspergillus niger probed by perturbation difference spectroscopy, chemical modification, and mutagenesis. Svensson B; Sierks MR Carbohydr Res; 1992 Apr; 227():29-44. PubMed ID: 1499029 [TBL] [Abstract][Full Text] [Related]
39. Stabilization of Aspergillus awamori glucoamylase by proline substitution and combining stabilizing mutations. Allen MJ; Coutinho PM; Ford CF Protein Eng; 1998 Sep; 11(9):783-8. PubMed ID: 9796827 [TBL] [Abstract][Full Text] [Related]