These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 19704546)

  • 1. An Interplay Between Small Regulatory RNAs Patterns Leaves.
    Nogueira FTs; Timmermans MC
    Plant Signal Behav; 2007 Nov; 2(6):519-21. PubMed ID: 19704546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organ polarity in plants is specified through the opposing activity of two distinct small regulatory RNAs.
    Nogueira FT; Sarkar AK; Chitwood DH; Timmermans MC
    Cold Spring Harb Symp Quant Biol; 2006; 71():157-64. PubMed ID: 17381292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of small RNA accumulation in the maize shoot apex.
    Nogueira FT; Chitwood DH; Madi S; Ohtsu K; Schnable PS; Scanlon MJ; Timmermans MC
    PLoS Genet; 2009 Jan; 5(1):e1000320. PubMed ID: 19119413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Specification of adaxial cell fate during maize leaf development.
    Juarez MT; Twigg RW; Timmermans MC
    Development; 2004 Sep; 131(18):4533-44. PubMed ID: 15342478
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two small regulatory RNAs establish opposing fates of a developmental axis.
    Nogueira FT; Madi S; Chitwood DH; Juarez MT; Timmermans MC
    Genes Dev; 2007 Apr; 21(7):750-5. PubMed ID: 17403777
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ragged seedling2 Encodes an ARGONAUTE7-like protein required for mediolateral expansion, but not dorsiventrality, of maize leaves.
    Douglas RN; Wiley D; Sarkar A; Springer N; Timmermans MC; Scanlon MJ
    Plant Cell; 2010 May; 22(5):1441-51. PubMed ID: 20453116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide analysis of leafbladeless1-regulated and phased small RNAs underscores the importance of the TAS3 ta-siRNA pathway to maize development.
    Dotto MC; Petsch KA; Aukerman MJ; Beatty M; Hammell M; Timmermans MC
    PLoS Genet; 2014 Dec; 10(12):e1004826. PubMed ID: 25503246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The ASYMMETRIC LEAVES Complex Employs Multiple Modes of Regulation to Affect Adaxial-Abaxial Patterning and Leaf Complexity.
    Husbands AY; Benkovics AH; Nogueira FT; Lodha M; Timmermans MC
    Plant Cell; 2015 Dec; 27(12):3321-35. PubMed ID: 26589551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The small interfering RNA production pathway is required for shoot meristem initiation in rice.
    Nagasaki H; Itoh J; Hayashi K; Hibara K; Satoh-Nagasawa N; Nosaka M; Mukouhata M; Ashikari M; Kitano H; Matsuoka M; Nagato Y; Sato Y
    Proc Natl Acad Sci U S A; 2007 Sep; 104(37):14867-71. PubMed ID: 17804793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specification of leaf polarity in Arabidopsis via the trans-acting siRNA pathway.
    Garcia D; Collier SA; Byrne ME; Martienssen RA
    Curr Biol; 2006 May; 16(9):933-8. PubMed ID: 16682355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leaf adaxial-abaxial polarity specification and lamina outgrowth: evolution and development.
    Yamaguchi T; Nukazuka A; Tsukaya H
    Plant Cell Physiol; 2012 Jul; 53(7):1180-94. PubMed ID: 22619472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The milkweed pod1 gene encodes a KANADI protein that is required for abaxial/adaxial patterning in maize leaves.
    Candela H; Johnston R; Gerhold A; Foster T; Hake S
    Plant Cell; 2008 Aug; 20(8):2073-87. PubMed ID: 18757553
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Auxin depletion from leaf primordia contributes to organ patterning.
    Qi J; Wang Y; Yu T; Cunha A; Wu B; Vernoux T; Meyerowitz E; Jiao Y
    Proc Natl Acad Sci U S A; 2014 Dec; 111(52):18769-74. PubMed ID: 25512543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Auxin polar transport flanking incipient primordium initiates leaf adaxial-abaxial polarity patterning.
    Dong J; Huang H
    J Integr Plant Biol; 2018 Jun; 60(6):455-464. PubMed ID: 29405646
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pattern formation via small RNA mobility.
    Chitwood DH; Nogueira FT; Howell MD; Montgomery TA; Carrington JC; Timmermans MC
    Genes Dev; 2009 Mar; 23(5):549-54. PubMed ID: 19270155
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transforming compound leaf patterning by manipulating REVOLUTA in Medicago truncatula.
    Zhou C; Han L; Zhao Y; Wang H; Nakashima J; Tong J; Xiao L; Wang ZY
    Plant J; 2019 Nov; 100(3):562-571. PubMed ID: 31350797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DRB4-dependent TAS3 trans-acting siRNAs control leaf morphology through AGO7.
    Adenot X; Elmayan T; Lauressergues D; Boutet S; Bouché N; Gasciolli V; Vaucheret H
    Curr Biol; 2006 May; 16(9):927-32. PubMed ID: 16682354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The complex of ASYMMETRIC LEAVES (AS) proteins plays a central role in antagonistic interactions of genes for leaf polarity specification in Arabidopsis.
    Machida C; Nakagawa A; Kojima S; Takahashi H; Machida Y
    Wiley Interdiscip Rev Dev Biol; 2015; 4(6):655-71. PubMed ID: 26108442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinct regulation of adaxial-abaxial polarity in anther patterning in rice.
    Toriba T; Suzaki T; Yamaguchi T; Ohmori Y; Tsukaya H; Hirano HY
    Plant Cell; 2010 May; 22(5):1452-62. PubMed ID: 20511295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. microRNA-mediated repression of rolled leaf1 specifies maize leaf polarity.
    Juarez MT; Kui JS; Thomas J; Heller BA; Timmermans MC
    Nature; 2004 Mar; 428(6978):84-8. PubMed ID: 14999285
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.