These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 19704632)

  • 1. Stomatal development: three steps for cell-type differentiation.
    Torii KU; Kanaoka MM; Pillitteri LJ; Bogenschutz NL
    Plant Signal Behav; 2007 Jul; 2(4):311-3. PubMed ID: 19704632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Termination of asymmetric cell division and differentiation of stomata.
    Pillitteri LJ; Sloan DB; Bogenschutz NL; Torii KU
    Nature; 2007 Feb; 445(7127):501-5. PubMed ID: 17183267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intragenic suppressors unravel the role of the SCREAM ACT-like domain for bHLH partner selectivity in stomatal development.
    Seo H; Sepuru KM; Putarjunan A; Aguirre L; Burrows BA; Torii KU
    Proc Natl Acad Sci U S A; 2022 Mar; 119(9):. PubMed ID: 35173013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequence and function of basic helix-loop-helix proteins required for stomatal development in Arabidopsis are deeply conserved in land plants.
    MacAlister CA; Bergmann DC
    Evol Dev; 2011; 13(2):182-92. PubMed ID: 21410874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Breaking the silence: three bHLH proteins direct cell-fate decisions during stomatal development.
    Pillitteri LJ; Torii KU
    Bioessays; 2007 Sep; 29(9):861-70. PubMed ID: 17691100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FOUR LIPS plays a role in meristemoid-to-GMC fate transition during stomatal development in Arabidopsis.
    Li P; Chen L; Gu X; Zhao M; Wang W; Hou S
    Plant J; 2023 Apr; 114(2):424-436. PubMed ID: 36786686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Timely expression of the Arabidopsis stoma-fate master regulator MUTE is required for specification of other epidermal cell types.
    Triviño M; Martín-Trillo M; Ballesteros I; Delgado D; de Marcos A; Desvoyes B; Gutiérrez C; Mena M; Fenoll C
    Plant J; 2013 Sep; 75(5):808-22. PubMed ID: 23662679
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcription factor control of asymmetric cell divisions that establish the stomatal lineage.
    MacAlister CA; Ohashi-Ito K; Bergmann DC
    Nature; 2007 Feb; 445(7127):537-40. PubMed ID: 17183265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell Cycle Dynamics during Stomatal Development: Window of MUTE Action and Ramification of Its Loss-of-Function on an Uncommitted Precursor.
    Zuch DT; Herrmann A; Kim ED; Torii KU
    Plant Cell Physiol; 2023 Mar; 64(3):325-335. PubMed ID: 36609867
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stomatal development in Arabidopsis and grasses: differences and commonalities.
    Serna L
    Int J Dev Biol; 2011; 55(1):5-10. PubMed ID: 21425077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The bHLH protein, MUTE, controls differentiation of stomata and the hydathode pore in Arabidopsis.
    Pillitteri LJ; Bogenschutz NL; Torii KU
    Plant Cell Physiol; 2008 Jun; 49(6):934-43. PubMed ID: 18450784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Shout-Out to Stomatal Development: How the bHLH Proteins SPEECHLESS, MUTE and FAMA Regulate Cell Division and Cell Fate.
    Lampard GR; Bergmann DC
    Plant Signal Behav; 2007 Jul; 2(4):290-2. PubMed ID: 19704685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental validation of the mechanism of stomatal development diversification.
    Doll Y; Koga H; Tsukaya H
    J Exp Bot; 2023 Sep; 74(18):5667-5681. PubMed ID: 37555400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Down-Regulating the Expression of 53 Soybean Transcription Factor Genes Uncovers a Role for SPEECHLESS in Initiating Stomatal Cell Lineages during Embryo Development.
    Danzer J; Mellott E; Bui AQ; Le BH; Martin P; Hashimoto M; Perez-Lesher J; Chen M; Pelletier JM; Somers DA; Goldberg RB; Harada JJ
    Plant Physiol; 2015 Jul; 168(3):1025-35. PubMed ID: 25963149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SPEECHLESS and MUTE Mediate Feedback Regulation of Signal Transduction during Stomatal Development.
    Wakeel A; Wang L; Xu M
    Plants (Basel); 2021 Feb; 10(3):. PubMed ID: 33668323
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Orthologs of Arabidopsis thaliana stomatal bHLH genes and regulation of stomatal development in grasses.
    Liu T; Ohashi-Ito K; Bergmann DC
    Development; 2009 Jul; 136(13):2265-76. PubMed ID: 19502487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CDK8 of the mediator kinase module connects leaf development to the establishment of correct stomata patterning by regulating the levels of the transcription factor SPEECHLESS (SPCH).
    Hermida-Carrera C; Vergara A; Cervela-Cardona L; Jin X; Björklund S; Strand Å
    Plant Cell Environ; 2024 Dec; 47(12):5237-5251. PubMed ID: 39177450
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SCREAM/ICE1 and SCREAM2 specify three cell-state transitional steps leading to arabidopsis stomatal differentiation.
    Kanaoka MM; Pillitteri LJ; Fujii H; Yoshida Y; Bogenschutz NL; Takabayashi J; Zhu JK; Torii KU
    Plant Cell; 2008 Jul; 20(7):1775-85. PubMed ID: 18641265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution of the bHLH genes involved in stomatal development: implications for the expansion of developmental complexity of stomata in land plants.
    Ran JH; Shen TT; Liu WJ; Wang XQ
    PLoS One; 2013; 8(11):e78997. PubMed ID: 24244399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell fate transitions during stomatal development.
    Serna L
    Bioessays; 2009 Aug; 31(8):865-73. PubMed ID: 19565615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.