These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 19704877)

  • 21. Regulation of hippocampal synaptic plasticity by BDNF.
    Leal G; Afonso PM; Salazar IL; Duarte CB
    Brain Res; 2015 Sep; 1621():82-101. PubMed ID: 25451089
    [TBL] [Abstract][Full Text] [Related]  

  • 22. BDNF signaling in the formation, maturation and plasticity of glutamatergic and GABAergic synapses.
    Gottmann K; Mittmann T; Lessmann V
    Exp Brain Res; 2009 Dec; 199(3-4):203-34. PubMed ID: 19777221
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Theta Burst Firing Recruits BDNF Release and Signaling in Postsynaptic CA1 Neurons in Spike-Timing-Dependent LTP.
    Edelmann E; Cepeda-Prado E; Franck M; Lichtenecker P; Brigadski T; Leßmann V
    Neuron; 2015 May; 86(4):1041-1054. PubMed ID: 25959732
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A simple role for BDNF in learning and memory?
    Cunha C; Brambilla R; Thomas KL
    Front Mol Neurosci; 2010; 3():1. PubMed ID: 20162032
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Persistence of learning-induced synapses depends on neurotrophic priming of glucocorticoid receptors.
    Arango-Lievano M; Borie AM; Dromard Y; Murat M; Desarmenien MG; Garabedian MJ; Jeanneteau F
    Proc Natl Acad Sci U S A; 2019 Jun; 116(26):13097-13106. PubMed ID: 31182610
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nitric oxide and synaptic dynamics in the adult brain: physiopathological aspects.
    Moreno-López B; González-Forero D
    Rev Neurosci; 2006; 17(3):309-57. PubMed ID: 16878402
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Positive AMPA receptor modulation rapidly stimulates BDNF release and increases dendritic mRNA translation.
    Jourdi H; Hsu YT; Zhou M; Qin Q; Bi X; Baudry M
    J Neurosci; 2009 Jul; 29(27):8688-97. PubMed ID: 19587275
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Postsynaptic secretion of BDNF and NT-3 from hippocampal neurons depends on calcium calmodulin kinase II signaling and proceeds via delayed fusion pore opening.
    Kolarow R; Brigadski T; Lessmann V
    J Neurosci; 2007 Sep; 27(39):10350-64. PubMed ID: 17898207
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulation of quantal secretion by neurotrophic factors at developing motoneurons in Xenopus cell cultures.
    Liou JC; Yang RS; Fu WM
    J Physiol; 1997 Aug; 503 ( Pt 1)(Pt 1):129-39. PubMed ID: 9288681
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulation of acetylcholine release by extracellular matrix proteins at developing motoneurons in Xenopus cell cultures.
    Fu WM; Shih YC; Chen SY; Tsai PH
    J Neurosci Res; 2001 Feb; 63(4):320-9. PubMed ID: 11170182
    [TBL] [Abstract][Full Text] [Related]  

  • 31. BDNF and NT-3 increase velocity of activity front propagation in unidimensional hippocampal cultures.
    Jacobi S; Soriano J; Moses E
    J Neurophysiol; 2010 Dec; 104(6):2932-9. PubMed ID: 20668274
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Activity- and BDNF-induced plasticity of miniature synaptic currents in ES cell-derived neurons integrated in a neocortical network.
    Copi A; Jüngling K; Gottmann K
    J Neurophysiol; 2005 Dec; 94(6):4538-43. PubMed ID: 16293594
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Calcium Release Mediated by Redox-Sensitive RyR2 Channels Has a Central Role in Hippocampal Structural Plasticity and Spatial Memory.
    More JY; Bruna BA; Lobos PE; Galaz JL; Figueroa PL; Namias S; Sánchez GL; Barrientos GC; Valdés JL; Paula-Lima AC; Hidalgo C; Adasme T
    Antioxid Redox Signal; 2018 Oct; 29(12):1125-1146. PubMed ID: 29357673
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Are there differences between the secretion characteristics of NGF and BDNF? Implications for the modulatory role of neurotrophins in activity-dependent neuronal plasticity.
    Griesbeck O; Canossa M; Campana G; Gärtner A; Hoener MC; Nawa H; Kolbeck R; Thoenen H
    Microsc Res Tech; 1999 May 15-Jun 1; 45(4-5):262-75. PubMed ID: 10383119
    [TBL] [Abstract][Full Text] [Related]  

  • 35. BDNF signaling during the lifetime of dendritic spines.
    Zagrebelsky M; Tacke C; Korte M
    Cell Tissue Res; 2020 Oct; 382(1):185-199. PubMed ID: 32537724
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synaptic secretion of BDNF after high-frequency stimulation of glutamatergic synapses.
    Hartmann M; Heumann R; Lessmann V
    EMBO J; 2001 Nov; 20(21):5887-97. PubMed ID: 11689429
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neurobiological actions by three distinct subtypes of brain-derived neurotrophic factor: Multi-ligand model of growth factor signaling.
    Mizui T; Ishikawa Y; Kumanogoh H; Kojima M
    Pharmacol Res; 2016 Mar; 105():93-8. PubMed ID: 26747403
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modulation of synaptic plasticity by the coactivation of spatially distinct synaptic inputs in rat hippocampal CA1 apical dendrites.
    Kondo M; Kitajima T; Fujii S; Tsukada M; Aihara T
    Brain Res; 2013 Aug; 1526():1-14. PubMed ID: 23711890
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The requirement of BDNF for hippocampal synaptic plasticity is experience-dependent.
    Aarse J; Herlitze S; Manahan-Vaughan D
    Hippocampus; 2016 Jun; 26(6):739-51. PubMed ID: 26662461
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanisms That Modulate and Diversify BDNF Functions: Implications for Hippocampal Synaptic Plasticity.
    De Vincenti AP; Ríos AS; Paratcha G; Ledda F
    Front Cell Neurosci; 2019; 13():135. PubMed ID: 31024262
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.