These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 19704914)

  • 1. Nonequilibrium separation of short DNA using nanoslit arrays.
    Strychalski EA; Lau HW; Archer LA
    J Appl Phys; 2009 Jul; 106(2):24915. PubMed ID: 19704914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analytical description of Ogston-regime biomolecule separation using nanofilters and nanopores.
    Li ZR; Liu GR; Han J; Cheng Y; Chen YZ; Wang JS; Hadjiconstantinou NG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Oct; 80(4 Pt 1):041911. PubMed ID: 19905346
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of order during Ogston sieving of DNA in colloidal crystals.
    King SB; Dorfman KD
    Anal Chem; 2013 Aug; 85(16):7769-76. PubMed ID: 23855831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dispersive transport of biomolecules in periodic energy landscapes with application to nanofilter sieving arrays.
    Li ZR; Liu GR; Hadjiconstantinou NG; Han J; Wang JS; Chen YZ
    Electrophoresis; 2011 Feb; 32(5):506-17. PubMed ID: 21341285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous high throughput nanofluidic separation through tangential-flow vertical nanoslit arrays.
    Bassu M; Holik P; Schmitz S; Steltenkamp S; Burg TP
    Lab Chip; 2016 Nov; 16(23):4546-4553. PubMed ID: 27766330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular sieving in periodic free-energy landscapes created by patterned nanofilter arrays.
    Fu J; Yoo J; Han J
    Phys Rev Lett; 2006 Jul; 97(1):018103. PubMed ID: 16907412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A model for the mobility of single-stranded DNA in capillary gel electrophoresis.
    Luckey JA; Smith LM
    Electrophoresis; 1993; 14(5-6):492-501. PubMed ID: 8354234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-resolution separation of DNA/proteins through nanorod sieving matrix.
    Cao Z; Zhu Y; Liu Y; Dong S; Zhao J; Wang Y; Yang S; Fu J
    Biosens Bioelectron; 2019 Jul; 137():8-14. PubMed ID: 31075713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembled colloidal arrays as three-dimensional nanofluidic sieves for separation of biomolecules on microchips.
    Zeng Y; Harrison DJ
    Anal Chem; 2007 Mar; 79(6):2289-95. PubMed ID: 17302388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Nanofilter Array Chip for Fast Gel-Free Biomolecule Separation.
    Fu J; Mao P; Han J
    Appl Phys Lett; 2005 Dec; 87(26):263902. PubMed ID: 18846250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Directed self-organization of single DNA molecules in a nanoslit via embedded nanopit arrays.
    Reisner W; Larsen NB; Flyvbjerg H; Tegenfeldt JO; Kristensen A
    Proc Natl Acad Sci U S A; 2009 Jan; 106(1):79-84. PubMed ID: 19122138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous-flow macromolecular sieving in slanted nanofilter array: stochastic model and coupling effect of electrostatic and steric hindrance.
    Ko SH; Park PJ; Han J
    Lab Chip; 2023 Oct; 23(20):4422-4433. PubMed ID: 37655439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Orientation of the agarose matrix by pulsed electric fields.
    Stellwagen NC
    Methods Mol Biol; 1992; 12():385-402. PubMed ID: 21409646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electromigration behavior of nucleic acids in capillary electrophoresis under pulsed-field conditions.
    Li Z; Liu C; Dou X; Ni Y; Wang J; Yamaguchi Y
    J Chromatogr A; 2014 Feb; 1331():100-7. PubMed ID: 24472841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous-flow separation of nanoparticles by electrostatic sieving at a micro-nanofluidic interface.
    Regtmeier J; Käsewieter J; Everwand M; Anselmetti D
    J Sep Sci; 2011 May; 34(10):1180-3. PubMed ID: 21442752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomolecule separation by steric hindrance using nanofluidic filters.
    Han J; Fu J
    Conf Proc IEEE Eng Med Biol Soc; 2004; 2004():2611-4. PubMed ID: 17270810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Separation of 100-kilobase DNA molecules in 10 seconds.
    Bakajin O; Duke TA; Tegenfeldt J; Chou CF; Chan SS; Austin RH; Cox EC
    Anal Chem; 2001 Dec; 73(24):6053-6. PubMed ID: 11791579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Capillary electrophoresis sequencing of small ssDNA molecules versus the Ogston regime: fitting data and interpreting parameters.
    Kopecka K; Drouin G; Slater GW
    Electrophoresis; 2004 Jul; 25(14):2177-85. PubMed ID: 15274001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Size-based separation of polyelectrolytes by capillary zone electrophoresis: migration regimes and selectivity of poly(styrenesulphonates) in solutions of derivatized cellulose.
    Minárik M; Găs B; Kenndler E
    Electrophoresis; 1997 Jan; 18(1):98-103. PubMed ID: 9059829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuum transport model of Ogston sieving in patterned nanofilter arrays for separation of rod-like biomolecules.
    Li ZR; Liu GR; Chen YZ; Wang JS; Bow H; Cheng Y; Han J
    Electrophoresis; 2008 Jan; 29(2):329-39. PubMed ID: 18203240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.