These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

47 related articles for article (PubMed ID: 19704985)

  • 1. Nonlinear pressure-flow relationships for passive microfluidic valves.
    Seker E; Leslie DC; Haj-Hariri H; Landers JP; Utz M; Begley MR
    Lab Chip; 2009 Sep; 9(18):2691-7. PubMed ID: 19704985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Passive flow-rate regulators using pressure-dependent autonomous deflection of parallel membrane valves.
    Doh I; Cho YH
    Lab Chip; 2009 Jul; 9(14):2070-5. PubMed ID: 19568677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluidic assembly and packing of microspheres in confined channels.
    Vanapalli SA; Iacovella CR; Sung KE; Mukhija D; Millunchick JM; Burns MA; Glotzer SC; Solomon MJ
    Langmuir; 2008 Apr; 24(7):3661-70. PubMed ID: 18294020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of high-performance cooling devices for space application by using flow boiling in narrow channels.
    Miura S; Inada Y; Shinmoto Y; Ohta H
    Ann N Y Acad Sci; 2009 Apr; 1161():192-201. PubMed ID: 19426317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic flow focusing: drop size and scaling in pressure versus flow-rate-driven pumping.
    Ward T; Faivre M; Abkarian M; Stone HA
    Electrophoresis; 2005 Oct; 26(19):3716-24. PubMed ID: 16196106
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flow rate analysis of a surface tension driven passive micropump.
    Berthier E; Beebe DJ
    Lab Chip; 2007 Nov; 7(11):1475-8. PubMed ID: 17960274
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-radix microfluidic multiplexer with pressure valves of different thresholds.
    Lee DW; Cho YH
    Lab Chip; 2009 Jun; 9(12):1681-6. PubMed ID: 19495450
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow switching in microfluidic networks using passive features and frequency tuning.
    Collino RR; Reilly-Shapiro N; Foresman B; Xu K; Utz M; Landers JP; Begley MR
    Lab Chip; 2013 Sep; 13(18):3668-74. PubMed ID: 23846477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping vortex-like hydrodynamic flow in microfluidic networks using fluorescence correlation spectroscopy.
    Liu K; Tian Y; Burrows SM; Reif RD; Pappas D
    Anal Chim Acta; 2009 Sep; 651(1):85-90. PubMed ID: 19733740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-channel peristaltic pump for microfluidic applications featuring monolithic PDMS inlay.
    Skafte-Pedersen P; Sabourin D; Dufva M; Snakenborg D
    Lab Chip; 2009 Oct; 9(20):3003-6. PubMed ID: 19789757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of surface tension-driven network parameters on backflow strength.
    Lee Y; Seder I; Kim SJ
    RSC Adv; 2019 Mar; 9(18):10345-10351. PubMed ID: 35520946
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A screw-actuated pneumatic valve for portable, disposable microfluidics.
    Zheng Y; Dai W; Wu H
    Lab Chip; 2009 Feb; 9(3):469-72. PubMed ID: 19156298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functionalized 3D-hydrogel plugs covalently patterned inside hydrophilic poly(dimethylsiloxane) microchannels for flow-through immunoassays.
    Sung WC; Chen HH; Makamba H; Chen SH
    Anal Chem; 2009 Oct; 81(19):7967-73. PubMed ID: 19722534
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of hydrogen storage materials by means of pressure concentration isotherms based on the mass flow method.
    Bielmann M; Kato S; Mauron P; Borgschulte A; Züttel A
    Rev Sci Instrum; 2009 Aug; 80(8):083901. PubMed ID: 19725661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Flow Regulation Performance Analysis of Microfluidic Passive Valve for High Throughput Liquid Delivery.
    Su Q; Chen W; Chen W; Jin Z; Lin Z
    Micromachines (Basel); 2022 Apr; 13(5):. PubMed ID: 35630154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stabilized flow in capillary-type closed viscometer.
    Kobayashi H
    Rev Sci Instrum; 1980 Mar; 51(3):357. PubMed ID: 18647067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pressure-driven spatiotemporal control of the laminar flow interface in a microfluidic network.
    Kuczenski B; LeDuc PR; Messner WC
    Lab Chip; 2007 May; 7(5):647-9. PubMed ID: 17476388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical calculation of forward and reverse flow in Tesla valves with different longitudinal width-to-narrow ratios.
    Zhang YL; Tong JB; Zhu ZC
    Sci Rep; 2023 Aug; 13(1):12496. PubMed ID: 37528245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of electrokinetically driven microfluidic T-mixer using frequency modulated electric field and channel geometry effects.
    Yan D; Yang C; Miao J; Lam Y; Huang X
    Electrophoresis; 2009 Sep; 30(18):3144-52. PubMed ID: 19764063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Millifluidic valves and pumps made of tape and plastic.
    Amador-Hernandez JU; Guevara-Pantoja PE; Cedillo-Alcantar DF; Caballero-Robledo GA; Garcia-Cordero JL
    Lab Chip; 2023 Oct; 23(20):4579-4591. PubMed ID: 37772361
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.