These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 19704987)

  • 1. The microfluidic palette: a diffusive gradient generator with spatio-temporal control.
    Atencia J; Morrow J; Locascio LE
    Lab Chip; 2009 Sep; 9(18):2707-14. PubMed ID: 19704987
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A three-channel microfluidic device for generating static linear gradients and its application to the quantitative analysis of bacterial chemotaxis.
    Diao J; Young L; Kim S; Fogarty EA; Heilman SM; Zhou P; Shuler ML; Wu M; DeLisa MP
    Lab Chip; 2006 Mar; 6(3):381-8. PubMed ID: 16511621
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of a membrane-based gradient generator for use in cell-signaling studies.
    Abhyankar VV; Lokuta MA; Huttenlocher A; Beebe DJ
    Lab Chip; 2006 Mar; 6(3):389-93. PubMed ID: 16511622
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic monitoring of Pseudomonas aeruginosa chemotaxis under the continuous chemical gradient.
    Jeong HH; Lee SH; Kim JM; Kim HE; Kim YG; Yoo JY; Chang WS; Lee CS
    Biosens Bioelectron; 2010 Oct; 26(2):351-6. PubMed ID: 20810268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of stable complex gradients across two-dimensional surfaces and three-dimensional gels.
    Mosadegh B; Huang C; Park JW; Shin HS; Chung BG; Hwang SK; Lee KH; Kim HJ; Brody J; Jeon NL
    Langmuir; 2007 Oct; 23(22):10910-2. PubMed ID: 17910490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A robust diffusion-based gradient generator for dynamic cell assays.
    Atencia J; Cooksey GA; Locascio LE
    Lab Chip; 2012 Jan; 12(2):309-16. PubMed ID: 22113489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diffusion-based and long-range concentration gradients of multiple chemicals for bacterial chemotaxis assays.
    Kim M; Kim T
    Anal Chem; 2010 Nov; 82(22):9401-9. PubMed ID: 20979359
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of dynamic temporal and spatial concentration gradients using microfluidic devices.
    Lin F; Saadi W; Rhee SW; Wang SJ; Mittal S; Jeon NL
    Lab Chip; 2004 Jun; 4(3):164-7. PubMed ID: 15159771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidics for bacterial chemotaxis.
    Ahmed T; Shimizu TS; Stocker R
    Integr Biol (Camb); 2010 Nov; 2(11-12):604-29. PubMed ID: 20967322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generalized serial dilution module for monotonic and arbitrary microfluidic gradient generators.
    Lee K; Kim C; Ahn B; Panchapakesan R; Full AR; Nordee L; Kang JY; Oh KW
    Lab Chip; 2009 Mar; 9(5):709-17. PubMed ID: 19224022
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication and characterization of microfluidic probes for convection enhanced drug delivery.
    Neeves KB; Lo CT; Foley CP; Saltzman WM; Olbricht WL
    J Control Release; 2006 Apr; 111(3):252-62. PubMed ID: 16476500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Concentration gradient generation of multiple chemicals using spatially controlled self-assembly of particles in microchannels.
    Choi E; Chang HK; Lim CY; Kim T; Park J
    Lab Chip; 2012 Oct; 12(20):3968-75. PubMed ID: 22907568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid spatial and temporal controlled signal delivery over large cell culture areas.
    VanDersarl JJ; Xu AM; Melosh NA
    Lab Chip; 2011 Sep; 11(18):3057-63. PubMed ID: 21805010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A microfluidic multi-injector for gradient generation.
    Chung BG; Lin F; Jeon NL
    Lab Chip; 2006 Jun; 6(6):764-8. PubMed ID: 16738728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A microfluidic device for parallel 3-D cell cultures in asymmetric environments.
    Frisk T; Rydholm S; Liebmann T; Svahn HA; Stemme G; Brismar H
    Electrophoresis; 2007 Dec; 28(24):4705-12. PubMed ID: 18008308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical force sensor array in a microfluidic device based on holographic optical tweezers.
    Uhrig K; Kurre R; Schmitz C; Curtis JE; Haraszti T; Clemen AE; Spatz JP
    Lab Chip; 2009 Mar; 9(5):661-8. PubMed ID: 19224015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A microfluidics-based turning assay reveals complex growth cone responses to integrated gradients of substrate-bound ECM molecules and diffusible guidance cues.
    Joanne Wang C; Li X; Lin B; Shim S; Ming GL; Levchenko A
    Lab Chip; 2008 Feb; 8(2):227-37. PubMed ID: 18231660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-throughput design of microfluidics based on directed bacterial motility.
    Kaehr B; Shear JB
    Lab Chip; 2009 Sep; 9(18):2632-7. PubMed ID: 19704977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chapter 15. A microfluidics-based method for chemoattractant gradients.
    Lin F
    Methods Enzymol; 2009; 461():333-47. PubMed ID: 19480926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of concentration gradient by controlled flow distribution and diffusive mixing in a microfluidic chip.
    Yang M; Yang J; Li CW; Zhao J
    Lab Chip; 2002 Aug; 2(3):158-63. PubMed ID: 15100827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.