These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Static microdroplet arrays: a microfluidic device for droplet trapping, incubation and release for enzymatic and cell-based assays. Huebner A; Bratton D; Whyte G; Yang M; Demello AJ; Abell C; Hollfelder F Lab Chip; 2009 Mar; 9(5):692-8. PubMed ID: 19224019 [TBL] [Abstract][Full Text] [Related]
24. Applying microfluidics to electrophysiology. Eddington DT J Vis Exp; 2007; (8):301. PubMed ID: 18989410 [TBL] [Abstract][Full Text] [Related]
25. Cell chemotaxis on paper for diagnostics. Walsh DI; Lalli ML; Kassas JM; Asthagiri AR; Murthy SK Anal Chem; 2015 Jun; 87(11):5505-10. PubMed ID: 25938457 [TBL] [Abstract][Full Text] [Related]
26. Microfluidic tools for quantitative studies of eukaryotic chemotaxis. Beta C; Bodenschatz E Eur J Cell Biol; 2011 Oct; 90(10):811-6. PubMed ID: 21783273 [TBL] [Abstract][Full Text] [Related]
27. Investigations of mixing process in microfluidic manifold designed according to biomimetic rule. Cieslicki K; Piechna A Lab Chip; 2009 Mar; 9(5):726-32. PubMed ID: 19224024 [TBL] [Abstract][Full Text] [Related]
28. Continuous flow in open microfluidics using controlled evaporation. Zimmermann M; Bentley S; Schmid H; Hunziker P; Delamarche E Lab Chip; 2005 Dec; 5(12):1355-9. PubMed ID: 16286965 [TBL] [Abstract][Full Text] [Related]
29. Quantitatively controlled in situ formation of hydrogel membranes in microchannels for generation of stable chemical gradients. Choi E; Jun I; Chang HK; Park KM; Shin H; Park KD; Park J Lab Chip; 2012 Jan; 12(2):302-8. PubMed ID: 22108911 [TBL] [Abstract][Full Text] [Related]
30. Optimization of microfluidic fuel cells using transport principles. Lee J; Lim KG; Palmore GT; Tripathi A Anal Chem; 2007 Oct; 79(19):7301-7. PubMed ID: 17727270 [TBL] [Abstract][Full Text] [Related]
31. Bacterial chemotaxis transverse to axial flow in a microfluidic channel. Lanning LM; Ford RM; Long T Biotechnol Bioeng; 2008 Jul; 100(4):653-63. PubMed ID: 18306417 [TBL] [Abstract][Full Text] [Related]
32. Biological applications of microfluidic gradient devices. Kim S; Kim HJ; Jeon NL Integr Biol (Camb); 2010 Nov; 2(11-12):584-603. PubMed ID: 20957276 [TBL] [Abstract][Full Text] [Related]
33. Quantitative analysis of chemotaxis towards toluene by Pseudomonas putida in a convection-free microfluidic device. Wang X; Atencia J; Ford RM Biotechnol Bioeng; 2015 May; 112(5):896-904. PubMed ID: 25408100 [TBL] [Abstract][Full Text] [Related]
34. A parallel diffusion-based microfluidic device for bacterial chemotaxis analysis. Si G; Yang W; Bi S; Luo C; Ouyang Q Lab Chip; 2012 Apr; 12(7):1389-94. PubMed ID: 22361931 [TBL] [Abstract][Full Text] [Related]
35. Generation of arbitrary monotonic concentration profiles by a serial dilution microfluidic network composed of microchannels with a high fluidic-resistance ratio. Hattori K; Sugiura S; Kanamori T Lab Chip; 2009 Jun; 9(12):1763-72. PubMed ID: 19495461 [TBL] [Abstract][Full Text] [Related]
36. Generation of complex concentration profiles by partial diffusive mixing in multi-stream laminar flow. Zhou Y; Wang Y; Mukherjee T; Lin Q Lab Chip; 2009 May; 9(10):1439-48. PubMed ID: 19417912 [TBL] [Abstract][Full Text] [Related]
37. Development of a disposable infusion system for the delivery of protein therapeutics. Eddington DT; Beebe DJ Biomed Microdevices; 2005 Sep; 7(3):223-30. PubMed ID: 16133810 [TBL] [Abstract][Full Text] [Related]
38. Migration of human granulocytes in filters: effects of gravity and movable gradients of f-MLP. Braide M; Ebrahimzadeh PR; Strid KG; Bjursten LM Biorheology; 1994; 31(6):617-30. PubMed ID: 7696636 [TBL] [Abstract][Full Text] [Related]