These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 19704989)

  • 21. Particles emitted from indoor combustion sources: size distribution measurement and chemical analysis.
    Roy AA; Baxla SP; Gupta T; Bandyopadhyaya R; Tripathi SN
    Inhal Toxicol; 2009 Aug; 21(10):837-48. PubMed ID: 19591538
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A new semivolatile aerosol dichotomous sampler.
    Kim SW; Raynor PC
    Ann Occup Hyg; 2009 Apr; 53(3):239-48. PubMed ID: 19279161
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A microfluidic manipulator for enrichment and alignment of moving cells and particles.
    Chen HH; Sun B; Tran KK; Shen H; Gao D
    J Biomech Eng; 2009 Jul; 131(7):074505. PubMed ID: 19640141
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Physicochemical characterization of Capstone depleted uranium aerosols II: particle size distributions as a function of time.
    Cheng YS; Kenoyer JL; Guilmette RA; Parkhurst MA
    Health Phys; 2009 Mar; 96(3):266-75. PubMed ID: 19204485
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Entrapment and measurement of a biologically functionalized microbead with a microwell electrode.
    Chang CY; Takahashi Y; Murata T; Shiku H; Chang HC; Matsue T
    Lab Chip; 2009 May; 9(9):1185-92. PubMed ID: 19370235
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Particulate matter generated during monopolar and bipolar hysteroscopic human uterine tissue vaporization.
    Farrugia M; Hussain SY; Perrett D
    J Minim Invasive Gynecol; 2009; 16(4):458-64. PubMed ID: 19482521
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Acceleration of absolute negative mobility.
    Regtmeier J; Grauwin S; Eichhorn R; Reimann P; Anselmetti D; Ros A
    J Sep Sci; 2007 Jul; 30(10):1461-7. PubMed ID: 17623426
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microdevices for manipulation and accumulation of micro- and nanoparticles by dielectrophoresis.
    Dürr M; Kentsch J; Müller T; Schnelle T; Stelzle M
    Electrophoresis; 2003 Feb; 24(4):722-31. PubMed ID: 12601744
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Continuous particle separation in spiral microchannels using Dean flows and differential migration.
    Bhagat AA; Kuntaegowdanahalli SS; Papautsky I
    Lab Chip; 2008 Nov; 8(11):1906-14. PubMed ID: 18941692
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An integrated hybrid interference and absorption filter for fluorescence detection in lab-on-a-chip devices.
    Richard C; Renaudin A; Aimez V; Charette PG
    Lab Chip; 2009 May; 9(10):1371-6. PubMed ID: 19417903
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Relationships among particle number, surface area, and respirable mass concentrations in automotive engine manufacturing.
    Heitbrink WA; Evans DE; Ku BK; Maynard AD; Slavin TJ; Peters TM
    J Occup Environ Hyg; 2009 Jan; 6(1):19-31. PubMed ID: 18982535
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rapid microfluidic separation of magnetic beads through dielectrophoresis and magnetophoresis.
    Krishnan JN; Kim C; Park HJ; Kang JY; Kim TS; Kim SK
    Electrophoresis; 2009 May; 30(9):1457-63. PubMed ID: 19425001
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optically induced flow cytometry for continuous microparticle counting and sorting.
    Lin YH; Lee GB
    Biosens Bioelectron; 2008 Dec; 24(4):572-8. PubMed ID: 18635347
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Measuring reaction rates on single particles in a microfluidic device.
    Caulum MM; Henry CS
    Lab Chip; 2008 Jun; 8(6):865-7. PubMed ID: 18497903
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Number-concentration of nanoparticles in liposomal and polymeric multiparticulate preparations: empirical and calculation methods.
    Epstein H; Afergan E; Moise T; Richter Y; Rudich Y; Golomb G
    Biomaterials; 2006 Feb; 27(4):651-9. PubMed ID: 16054683
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Soft inertial microfluidics for high throughput separation of bacteria from human blood cells.
    Wu Z; Willing B; Bjerketorp J; Jansson JK; Hjort K
    Lab Chip; 2009 May; 9(9):1193-9. PubMed ID: 19370236
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Continuous focusing of microparticles using inertial lift force and vorticity via multi-orifice microfluidic channels.
    Park JS; Song SH; Jung HI
    Lab Chip; 2009 Apr; 9(7):939-48. PubMed ID: 19294305
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assessment of the contribution of electron microscopy to nanoparticle characterization sampled with two cascade impactors.
    Noël A; L'Espérance G; Cloutier Y; Plamondon P; Boucher J; Philippe S; Dion C; Truchon G; Zayed J
    J Occup Environ Hyg; 2013; 10(3):155-72. PubMed ID: 23356435
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of winter airborne particles at Emperor Qin's Terra-cotta Museum, China.
    Hu T; Lee S; Cao J; Chow JC; Watson JG; Ho K; Ho W; Rong B; An Z
    Sci Total Environ; 2009 Oct; 407(20):5319-27. PubMed ID: 19640566
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High-velocity transport of nanoparticles through 1-D nanochannels at very large particle to channel diameter ratios.
    Vankrunkelsven S; Clicq D; Pappaert K; Baron GV; Desmet G
    Anal Chem; 2004 Jun; 76(11):3005-11. PubMed ID: 15167775
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.