These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 19705142)

  • 41. Beyond the promise: Exploring the complex interactions of nanoparticles within biological systems.
    Ji Y; Wang Y; Wang X; Lv C; Zhou Q; Jiang G; Yan B; Chen L
    J Hazard Mater; 2024 Apr; 468():133800. PubMed ID: 38368688
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Health-risk assessment for workers exposed to polycyclic aromatic hydrocarbons (PAHs) in a carbon black manufacturing industry.
    Tsai PJ; Shieh HY; Lee WJ; Lai SO
    Sci Total Environ; 2001 Oct; 278(1-3):137-50. PubMed ID: 11669262
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Assessing the airborne titanium dioxide nanoparticle-related exposure hazard at workplace.
    Liao CM; Chiang YH; Chio CP
    J Hazard Mater; 2009 Feb; 162(1):57-65. PubMed ID: 18554790
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Relevance of occupational skin exposure.
    Fiserova-Bergerova V
    Ann Occup Hyg; 1993 Dec; 37(6):673-85. PubMed ID: 8304684
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mechanistic understanding of toxicity from nanocatalysts.
    Jiang C; Jia J; Zhai S
    Int J Mol Sci; 2014 Aug; 15(8):13967-92. PubMed ID: 25119861
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A review to support the derivation of a worst-case dermal penetration value for nanoparticles.
    Gimeno-Benito I; Giusti A; Dekkers S; Haase A; Janer G
    Regul Toxicol Pharmacol; 2021 Feb; 119():104836. PubMed ID: 33249100
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dermal uptake of petroleum substances.
    Jakasa I; Kezic S; Boogaard PJ
    Toxicol Lett; 2015 Jun; 235(2):123-39. PubMed ID: 25827404
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Occupational dermal exposure to nanoparticles and nano-enabled products: Part 2, exploration of exposure processes and methods of assessment.
    Brouwer DH; Spaan S; Roff M; Sleeuwenhoek A; Tuinman I; Goede H; van Duuren-Stuurman B; Filon FL; Bello D; Cherrie JW
    Int J Hyg Environ Health; 2016 Aug; 219(6):503-12. PubMed ID: 27283207
    [TBL] [Abstract][Full Text] [Related]  

  • 49. In Vitro Method to Quantify Dermal Absorption of Pesticide Residues.
    Clarke JF; Cordery SF; Morgan NA; Knowles PK; Guy RH
    Chem Res Toxicol; 2015 Feb; 28(2):166-8. PubMed ID: 25647690
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Biomonitoring as a tool in the human health risk characterization of dermal exposure.
    Boogaard PJ
    Hum Exp Toxicol; 2008 Apr; 27(4):297-305. PubMed ID: 18684800
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Percutaneous penetration and metabolism of 2-butoxyethanol.
    Lockley DJ; Howes D; Williams FM
    Arch Toxicol; 2004 Nov; 78(11):617-28. PubMed ID: 15455191
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A structured observational method to assess dermal exposure to manufactured nanoparticles DREAM as an initial assessment tool.
    Van Duuren-Stuurman B; Pelzer J; Moehlmann C; Berges M; Bard D; Wake D; Mark D; Jankowska E; Brouwer D
    Int J Occup Environ Health; 2010; 16(4):399-405. PubMed ID: 21222384
    [TBL] [Abstract][Full Text] [Related]  

  • 53. How to measure hazards/risks following exposures to nanoscale or pigment-grade titanium dioxide particles.
    Warheit DB
    Toxicol Lett; 2013 Jul; 220(2):193-204. PubMed ID: 23603385
    [TBL] [Abstract][Full Text] [Related]  

  • 54.
    Cao M; Li B; Guo M; Liu Y; Zhang L; Wang Y; Hu B; Li J; Sutherland DS; Wang L; Chen C
    Nanotoxicology; 2021 Feb; 15(1):131-144. PubMed ID: 33370537
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Toxicology of nanoparticles.
    Elsaesser A; Howard CV
    Adv Drug Deliv Rev; 2012 Feb; 64(2):129-37. PubMed ID: 21925220
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Toxicity and penetration of TiO2 nanoparticles in hairless mice and porcine skin after subchronic dermal exposure.
    Wu J; Liu W; Xue C; Zhou S; Lan F; Bi L; Xu H; Yang X; Zeng FD
    Toxicol Lett; 2009 Dec; 191(1):1-8. PubMed ID: 19501137
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Investigation of micronized titanium dioxide penetration in human skin xenografts and its effect on cellular functions of human skin-derived cells.
    Kiss B; Bíró T; Czifra G; Tóth BI; Kertész Z; Szikszai Z; Kiss AZ; Juhász I; Zouboulis CC; Hunyadi J
    Exp Dermatol; 2008 Aug; 17(8):659-67. PubMed ID: 18312389
    [TBL] [Abstract][Full Text] [Related]  

  • 58. In-vivo dermal pharmacokinetics, efficacy, and safety of skin targeting nanoparticles for corticosteroid treatment of atopic dermatitis.
    Siddique MI; Katas H; Amin MC; Ng SF; Zulfakar MH; Jamil A
    Int J Pharm; 2016 Jun; 507(1-2):72-82. PubMed ID: 27154252
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Health hazards of nanoparticles: understanding the toxicity mechanism of nanosized ZnO in cosmetic products.
    Subramaniam VD; Prasad SV; Banerjee A; Gopinath M; Murugesan R; Marotta F; Sun XF; Pathak S
    Drug Chem Toxicol; 2019 Jan; 42(1):84-93. PubMed ID: 30103634
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cream formulation impact on topical administration of engineered colloidal nanoparticles.
    Santini B; Zanoni I; Marzi R; Cigni C; Bedoni M; Gramatica F; Palugan L; Corsi F; Granucci F; Colombo M
    PLoS One; 2015; 10(5):e0126366. PubMed ID: 25962161
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.