These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
300 related articles for article (PubMed ID: 19705354)
1. Integration of electrodes in a suction cup-driven microchip for alternating current-accelerated proteolysis. Liu T; Bao H; Zhang L; Chen G Electrophoresis; 2009 Sep; 30(18):3265-8. PubMed ID: 19705354 [TBL] [Abstract][Full Text] [Related]
2. Inflation bulb-driven microfluidic reactor for infrared-assisted proteolysis. Liu T; Bao H; Chen G Electrophoresis; 2010 Sep; 31(18):3070-3. PubMed ID: 20725916 [TBL] [Abstract][Full Text] [Related]
3. Alternating current-assisted on-plate proteolysis for MALDI-TOF MS peptide mapping. Wang S; Wei B; Yang P; Chen G Proteomics; 2008 Nov; 8(22):4637-41. PubMed ID: 18924112 [TBL] [Abstract][Full Text] [Related]
4. Plastic microchip liquid chromatography-matrix-assisted laser desorption/ionization mass spectrometry using monolithic columns. Ro KW; Liu J; Knapp DR J Chromatogr A; 2006 Apr; 1111(1):40-7. PubMed ID: 16480733 [TBL] [Abstract][Full Text] [Related]
5. Accelerated proteolysis in alternating electric fields for peptide mapping. Wang S; Bao H; Liu T; Zhang L; Yang P; Chen G Rapid Commun Mass Spectrom; 2008 Oct; 22(20):3225-32. PubMed ID: 18803334 [TBL] [Abstract][Full Text] [Related]
6. Immobilization of trypsin on silica-coated fiberglass core in microchip for highly efficient proteolysis. Liu T; Wang S; Chen G Talanta; 2009 Mar; 77(5):1767-73. PubMed ID: 19159796 [TBL] [Abstract][Full Text] [Related]
7. Immobilization of trypsin via graphene oxide-silica composite for efficient microchip proteolysis. Bao H; Zhang L; Chen G J Chromatogr A; 2013 Oct; 1310():74-81. PubMed ID: 23998335 [TBL] [Abstract][Full Text] [Related]
8. Trypsin-immobilized fiber core in syringe needle for highly efficient proteolysis. Wang S; Chen Z; Yang P; Chen G Proteomics; 2008 May; 8(9):1785-8. PubMed ID: 18442168 [TBL] [Abstract][Full Text] [Related]
9. Fabrication and performance of poly(methyl methacrylate) microfluidic chips with fiber cores. Fan H; Chen Z; Zhang L; Yang P; Chen G J Chromatogr A; 2008 Feb; 1179(2):224-8. PubMed ID: 18096173 [TBL] [Abstract][Full Text] [Related]
10. Immobilization of trypsin in the layer-by-layer coating of graphene oxide and chitosan on in-channel glass fiber for microfluidic proteolysis. Bao H; Chen Q; Zhang L; Chen G Analyst; 2011 Dec; 136(24):5190-6. PubMed ID: 22013584 [TBL] [Abstract][Full Text] [Related]
11. Immobilization of trypsin on poly(urea-formaldehyde)-coated fiberglass cores in microchip for highly efficient proteolysis. Fan H; Bao H; Zhang L; Chen G Proteomics; 2011 Aug; 11(16):3420-3. PubMed ID: 21751341 [TBL] [Abstract][Full Text] [Related]
12. Infrared-assisted tryptic proteolysis for peptide mapping. Wang S; Zhang L; Yang P; Chen G Proteomics; 2008 Jul; 8(13):2579-82. PubMed ID: 18546161 [TBL] [Abstract][Full Text] [Related]
13. Infrared-assisted on-plate proteolysis for MALDI-TOF-MS peptide mapping. Wang S; Bao H; Zhang L; Yang P; Chen G Anal Chem; 2008 Jul; 80(14):5640-7. PubMed ID: 18553945 [TBL] [Abstract][Full Text] [Related]
14. Microfluidic chips for mass spectrometry-based proteomics. Lee J; Soper SA; Murray KK J Mass Spectrom; 2009 May; 44(5):579-93. PubMed ID: 19373851 [TBL] [Abstract][Full Text] [Related]
15. Fiber-packed channel bioreactor for microfluidic protein digestion. Fan H; Chen G Proteomics; 2007 Oct; 7(19):3445-9. PubMed ID: 17722209 [TBL] [Abstract][Full Text] [Related]
16. Infrared-assisted proteolysis using trypsin-immobilized silica microspheres for peptide mapping. Bao H; Lui T; Zhang L; Chen G Proteomics; 2009 Feb; 9(4):1114-7. PubMed ID: 19180540 [TBL] [Abstract][Full Text] [Related]
17. Development of a microfluidics-based gel protein recovery system. Razunguzwa TT; Biddle A; Anderson H; Zhan D; Powell M Electrophoresis; 2009 Dec; 30(23):4020-8. PubMed ID: 19960466 [TBL] [Abstract][Full Text] [Related]