These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 19705390)

  • 1. Microfluidic mass-transfer control for the simple formation of complex multiple emulsions.
    Zhao CX; Middelberg AP
    Angew Chem Int Ed Engl; 2009; 48(39):7208-11. PubMed ID: 19705390
    [No Abstract]   [Full Text] [Related]  

  • 2. One-step emulsification of multiple concentric shells with capillary microfluidic devices.
    Kim SH; Weitz DA
    Angew Chem Int Ed Engl; 2011 Sep; 50(37):8731-4. PubMed ID: 21805548
    [No Abstract]   [Full Text] [Related]  

  • 3. Synthesis of composite emulsions and complex foams with the use of microfluidic flow-focusing devices.
    Hashimoto M; Garstecki P; Whitesides GM
    Small; 2007 Oct; 3(10):1792-802. PubMed ID: 17890646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oil droplet generation in PDMS microchannel using an amphiphilic continuous phase.
    Chae SK; Lee CH; Lee SH; Kim TS; Kang JY
    Lab Chip; 2009 Jul; 9(13):1957-61. PubMed ID: 19532972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic multicolor encoding of microspheres with nanoscopic surface complexity for multiplex immunoassays.
    Kim SH; Shim JW; Yang SM
    Angew Chem Int Ed Engl; 2011 Feb; 50(5):1171-4. PubMed ID: 21268220
    [No Abstract]   [Full Text] [Related]  

  • 6. Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles.
    Nisisako T; Torii T
    Lab Chip; 2008 Feb; 8(2):287-93. PubMed ID: 18231668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel asymmetric through-hole array microfabricated on a silicon plate for formulating monodisperse emulsions.
    Kobayashi I; Mukataka S; Nakajima M
    Langmuir; 2005 Aug; 21(17):7629-32. PubMed ID: 16089362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controllable preparation of monodisperse O/W and W/O emulsions in the same microfluidic device.
    Xu JH; Li SW; Tan J; Wang YJ; Luo GS
    Langmuir; 2006 Sep; 22(19):7943-6. PubMed ID: 16952223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. One-step formation of multiple emulsions in microfluidics.
    Abate AR; Thiele J; Weitz DA
    Lab Chip; 2011 Jan; 11(2):253-8. PubMed ID: 20967395
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Precise quantitative addition of multiple reagents into droplets in sequence using glass fiber-induced droplet coalescence.
    Li C; Xu J; Ma B
    Analyst; 2015 Feb; 140(3):701-5. PubMed ID: 25434979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photopatterning enzymes on polymer monoliths in microfluidic devices for steady-state kinetic analysis and spatially separated multi-enzyme reactions.
    Logan TC; Clark DS; Stachowiak TB; Svec F; Fréchet JM
    Anal Chem; 2007 Sep; 79(17):6592-8. PubMed ID: 17658765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic exploration of the phase diagram of a surfactant/water binary system.
    Leng J; Joanicot M; Ajdari A
    Langmuir; 2007 Feb; 23(5):2315-7. PubMed ID: 17266344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chiral separation by a pseudo membrane in a triple-laminar flow with a microfluidic contactor.
    Yoon TH; Hong LY; Kim DP
    Chem Asian J; 2011 Apr; 6(4):1015-8. PubMed ID: 21322111
    [No Abstract]   [Full Text] [Related]  

  • 14. Channel flow configuration for studying the kinetics of surfactant-polyelectrolyte binding.
    Carlsson S; Liljeroth P; Kontturi K
    Anal Chem; 2005 Nov; 77(21):6895-901. PubMed ID: 16255587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microfluidic selective concentration of microdroplet contents by spontaneous emulsification.
    Fukuyama M; Hibara A
    Anal Chem; 2015 Apr; 87(7):3562-5. PubMed ID: 25760305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A versatile platform for surface modification of microfluidic droplets.
    Li M; Jiang W; Chen Z; Suryaprakash S; Lv S; Tang Z; Chen X; Leong KW
    Lab Chip; 2017 Feb; 17(4):635-639. PubMed ID: 28154857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biocompatible surfactants for water-in-fluorocarbon emulsions.
    Holtze C; Rowat AC; Agresti JJ; Hutchison JB; Angilè FE; Schmitz CH; Köster S; Duan H; Humphry KJ; Scanga RA; Johnson JS; Pisignano D; Weitz DA
    Lab Chip; 2008 Oct; 8(10):1632-9. PubMed ID: 18813384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interfacial thermocapillary vortical flow for microfluidic mixing.
    Muruganathan R; Zhang Y; Fischer TM
    J Am Chem Soc; 2006 Mar; 128(11):3474-5. PubMed ID: 16536493
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Manipulation of gel emulsions by variable microchannel geometry.
    Surenjav E; Priest C; Herminghaus S; Seemann R
    Lab Chip; 2009 Jan; 9(2):325-30. PubMed ID: 19107292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From microdroplets to microfluidics: selective emulsion separation in microfluidic devices.
    Fidalgo LM; Whyte G; Bratton D; Kaminski CF; Abell C; Huck WT
    Angew Chem Int Ed Engl; 2008; 47(11):2042-5. PubMed ID: 18264960
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.