These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 19705420)

  • 21. Colloidal interactions between monoclonal antibodies in aqueous solutions.
    Arzenšek D; Kuzman D; Podgornik R
    J Colloid Interface Sci; 2012 Oct; 384(1):207-16. PubMed ID: 22840854
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Both Reversible Self-Association and Structural Changes Underpin Molecular Viscoelasticity of mAb Solutions.
    Sarangapani PS; Weaver J; Parupudi A; Besong TMD; Adams GG; Harding SE; Manikwar P; Castellanos MM; Bishop SM; Pathak JA
    J Pharm Sci; 2016 Dec; 105(12):3496-3506. PubMed ID: 27793346
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Viscosity analysis of high concentration bovine serum albumin aqueous solutions.
    Yadav S; Shire SJ; Kalonia DS
    Pharm Res; 2011 Aug; 28(8):1973-83. PubMed ID: 21491149
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Highly viscous antibody solutions are a consequence of network formation caused by domain-domain electrostatic complementarities: insights from coarse-grained simulations.
    Buck PM; Chaudhri A; Kumar S; Singh SK
    Mol Pharm; 2015 Jan; 12(1):127-39. PubMed ID: 25383990
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Opalescence in monoclonal antibody solutions and its correlation with intermolecular interactions in dilute and concentrated solutions.
    Raut AS; Kalonia DS
    J Pharm Sci; 2015 Apr; 104(4):1263-74. PubMed ID: 25556561
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Understanding and modulating opalescence and viscosity in a monoclonal antibody formulation.
    Salinas BA; Sathish HA; Bishop SM; Harn N; Carpenter JF; Randolph TW
    J Pharm Sci; 2010 Jan; 99(1):82-93. PubMed ID: 19475558
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Contrasting the Influence of Cationic Amino Acids on the Viscosity and Stability of a Highly Concentrated Monoclonal Antibody.
    Dear BJ; Hung JJ; Truskett TM; Johnston KP
    Pharm Res; 2017 Jan; 34(1):193-207. PubMed ID: 27837522
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Effect of Low Ionic Strength on Diffusion and Viscosity of Monoclonal Antibodies.
    Pindrus MA; Shire SJ; Yadav S; Kalonia DS
    Mol Pharm; 2018 Aug; 15(8):3133-3142. PubMed ID: 29996057
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prediction of colloidal stability of high concentration protein formulations.
    Garidel P; Blume A; Wagner M
    Pharm Dev Technol; 2015 May; 20(3):367-74. PubMed ID: 24392929
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A microliter capillary rheometer for characterization of protein solutions.
    Hudson SD; Sarangapani P; Pathak JA; Migler KB
    J Pharm Sci; 2015 Feb; 104(2):678-85. PubMed ID: 25308758
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Solution pH that minimizes self-association of three monoclonal antibodies is strongly dependent on ionic strength.
    Sule SV; Cheung JK; Antochshuk V; Bhalla AS; Narasimhan C; Blaisdell S; Shameem M; Tessier PM
    Mol Pharm; 2012 Apr; 9(4):744-51. PubMed ID: 22221144
    [TBL] [Abstract][Full Text] [Related]  

  • 32. High shear rheology and anisotropy in concentrated solutions of monoclonal antibodies.
    Zarraga IE; Taing R; Zarzar J; Luoma J; Hsiung J; Patel A; Lim FJ
    J Pharm Sci; 2013 Aug; 102(8):2538-49. PubMed ID: 23873347
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Therapeutic Antibody Engineering To Improve Viscosity and Phase Separation Guided by Crystal Structure.
    Chow CK; Allan BW; Chai Q; Atwell S; Lu J
    Mol Pharm; 2016 Mar; 13(3):915-23. PubMed ID: 26849155
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Protein-polyanion interactions for the controlled release of monoclonal antibodies.
    Schweizer D; Schönhammer K; Jahn M; Göpferich A
    Biomacromolecules; 2013 Jan; 14(1):75-83. PubMed ID: 23157419
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The influence of charge distribution on self-association and viscosity behavior of monoclonal antibody solutions.
    Yadav S; Laue TM; Kalonia DS; Singh SN; Shire SJ
    Mol Pharm; 2012 Apr; 9(4):791-802. PubMed ID: 22352470
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cluster Size and Quinary Structure Determine the Rheological Effects of Antibody Self-Association at High Concentrations.
    Wang W; Lilyestrom WG; Hu ZY; Scherer TM
    J Phys Chem B; 2018 Feb; 122(7):2138-2154. PubMed ID: 29359938
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phase separation of an IgG1 antibody solution under a low ionic strength condition.
    Nishi H; Miyajima M; Nakagami H; Noda M; Uchiyama S; Fukui K
    Pharm Res; 2010 Jul; 27(7):1348-60. PubMed ID: 20401522
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Solubility Challenges in High Concentration Monoclonal Antibody Formulations: Relationship with Amino Acid Sequence and Intermolecular Interactions.
    Pindrus M; Shire SJ; Kelley RF; Demeule B; Wong R; Xu Y; Yadav S
    Mol Pharm; 2015 Nov; 12(11):3896-907. PubMed ID: 26407030
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure of fibrinogen in electrolyte solutions derived from dynamic light scattering (DLS) and viscosity measurements.
    Wasilewska M; Adamczyk Z; Jachimska B
    Langmuir; 2009 Apr; 25(6):3698-704. PubMed ID: 19228031
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improving Viscosity and Stability of a Highly Concentrated Monoclonal Antibody Solution with Concentrated Proline.
    Hung JJ; Dear BJ; Dinin AK; Borwankar AU; Mehta SK; Truskett TT; Johnston KP
    Pharm Res; 2018 Apr; 35(7):133. PubMed ID: 29713822
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.