These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 19705420)

  • 41. Protonation of lysozymes and its consequences for the adsorption onto a mica surface.
    Jachimska B; Kozłowska A; Pajor-Świerzy A
    Langmuir; 2012 Aug; 28(31):11502-10. PubMed ID: 22783827
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The osmotic pressure of highly concentrated monoclonal antibody solutions: effect of solution conditions.
    Binabaji E; Rao S; Zydney AL
    Biotechnol Bioeng; 2014 Mar; 111(3):529-36. PubMed ID: 23996891
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Viscosity measurements of antibody solutions by photon correlation spectroscopy: an indirect approach - limitations and applicability for high-concentration liquid protein solutions.
    Wagner M; Reiche K; Blume A; Garidel P
    Pharm Dev Technol; 2013; 18(4):963-70. PubMed ID: 22256900
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Role of Cosolute-Protein Interactions in the Dissociation of Monoclonal Antibody Clusters.
    Scherer TM
    J Phys Chem B; 2015 Oct; 119(41):13027-38. PubMed ID: 26390096
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Specific ion and buffer effects on protein-protein interactions of a monoclonal antibody.
    Roberts D; Keeling R; Tracka M; van der Walle CF; Uddin S; Warwicker J; Curtis R
    Mol Pharm; 2015 Jan; 12(1):179-93. PubMed ID: 25389571
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Determination of Protein-Protein Interactions in a Mixture of Two Monoclonal Antibodies.
    Singh P; Roche A; van der Walle CF; Uddin S; Du J; Warwicker J; Pluen A; Curtis R
    Mol Pharm; 2019 Dec; 16(12):4775-4786. PubMed ID: 31613625
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Predicting Protein-Protein Interactions of Concentrated Antibody Solutions Using Dilute Solution Data and Coarse-Grained Molecular Models.
    Calero-Rubio C; Ghosh R; Saluja A; Roberts CJ
    J Pharm Sci; 2018 May; 107(5):1269-1281. PubMed ID: 29274822
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Pharmaceutical Perspective on Opalescence and Liquid-Liquid Phase Separation in Protein Solutions.
    Raut AS; Kalonia DS
    Mol Pharm; 2016 May; 13(5):1431-44. PubMed ID: 27017836
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Interfacial biocatalysis on charged and immobilized substrates: the roles of enzyme and substrate surface charge.
    Feller BE; Kellis JT; Cascão-Pereira LG; Robertson CR; Frank CW
    Langmuir; 2011 Jan; 27(1):250-63. PubMed ID: 21128607
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Viscosities and Protein Interactions of Bispecific Antibodies and Their Monospecific Mixtures.
    Woldeyes MA; Josephson LL; Leiske DL; Galush WJ; Roberts CJ; Furst EM
    Mol Pharm; 2018 Oct; 15(10):4745-4755. PubMed ID: 30157651
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Electrostatically Mediated Protein-Protein Interactions for Monoclonal Antibodies: A Combined Experimental and Coarse-Grained Molecular Modeling Approach.
    Ferreira GM; Calero-Rubio C; Sathish HA; Remmele RL; Roberts CJ
    J Pharm Sci; 2019 Jan; 108(1):120-132. PubMed ID: 30419274
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Characterization of polyelectrolyte features in polysaccharide systems and mucin.
    Nyström B; Kjøniksen AL; Beheshti N; Maleki A; Zhu K; Knudsen KD; Pamies R; Hernández Cifre JG; García de la Torre J
    Adv Colloid Interface Sci; 2010 Jul; 158(1-2):108-18. PubMed ID: 19482258
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cluster Percolation Causes Shear Thinning Behavior in Concentrated Solutions of Monoclonal Antibodies.
    Lanzaro A; Roche A; Sibanda N; Corbett D; Davis P; Shah M; Pathak JA; Uddin S; van der Walle CF; Yuan XF; Pluen A; Curtis R
    Mol Pharm; 2021 Jul; 18(7):2669-2682. PubMed ID: 34121411
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Quantitative characterization of nonspecific self- and hetero-interactions of proteins in nonideal solutions via static light scattering.
    Wu D; Minton AP
    J Phys Chem B; 2015 Feb; 119(5):1891-8. PubMed ID: 25580677
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Comparative effects of pH and ionic strength on protein-protein interactions, unfolding, and aggregation for IgG1 antibodies.
    Sahin E; Grillo AO; Perkins MD; Roberts CJ
    J Pharm Sci; 2010 Dec; 99(12):4830-48. PubMed ID: 20821389
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Molecular simulations of the pairwise interaction of monoclonal antibodies.
    Lapelosa M; Patapoff TW; Zarraga IE
    J Phys Chem B; 2014 Nov; 118(46):13132-41. PubMed ID: 25350229
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Temperature Dependence of Protein Solution Viscosity and Protein-Protein Interactions: Insights into the Origins of High-Viscosity Protein Solutions.
    Woldeyes MA; Qi W; Razinkov VI; Furst EM; Roberts CJ
    Mol Pharm; 2020 Dec; 17(12):4473-4482. PubMed ID: 33170708
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Impact of polymer surface characteristics on the microrheological measurement quality of protein solutions - A tracer particle screening.
    Bauer KC; Schermeyer MT; Seidel J; Hubbuch J
    Int J Pharm; 2016 May; 505(1-2):246-54. PubMed ID: 27025292
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Viscoelastic characterization of high concentration antibody formulations using quartz crystal microbalance with dissipation monitoring.
    Patel AR; Kerwin BA; Kanapuram SR
    J Pharm Sci; 2009 Sep; 98(9):3108-16. PubMed ID: 19025898
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Trimerization Dictates Solution Opalescence of a Monoclonal Antibody.
    Yang TC; Langford AJ; Kumar S; Ruesch JC; Wang W
    J Pharm Sci; 2016 Aug; 105(8):2328-37. PubMed ID: 27373839
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.