These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 19705486)

  • 1. gCOMBINE: A graphical user interface to perform structure-based comparative binding energy (COMBINE) analysis on a set of ligand-receptor complexes.
    Gil-Redondo R; Klett J; Gago F; Morreale A
    Proteins; 2010 Jan; 78(1):162-72. PubMed ID: 19705486
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative binding energy analysis of HIV-1 protease inhibitors: incorporation of solvent effects and validation as a powerful tool in receptor-based drug design.
    PĂ©rez C; Pastor M; Ortiz AR; Gago F
    J Med Chem; 1998 Mar; 41(6):836-52. PubMed ID: 9526559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Examining methods for calculations of binding free energies: LRA, LIE, PDLD-LRA, and PDLD/S-LRA calculations of ligands binding to an HIV protease.
    Sham YY; Chu ZT; Tao H; Warshel A
    Proteins; 2000 Jun; 39(4):393-407. PubMed ID: 10813821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of ligand-receptor binding thermodynamics by free energy force field three-dimensional quantitative structure-activity relationship analysis: applications to a set of glucose analogue inhibitors of glycogen phosphorylase.
    Venkatarangan P; Hopfinger AJ
    J Med Chem; 1999 Jun; 42(12):2169-79. PubMed ID: 10377222
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing scoring functions for protein-ligand interactions.
    Ferrara P; Gohlke H; Price DJ; Klebe G; Brooks CL
    J Med Chem; 2004 Jun; 47(12):3032-47. PubMed ID: 15163185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. E-novo: an automated workflow for efficient structure-based lead optimization.
    Pearce BC; Langley DR; Kang J; Huang H; Kulkarni A
    J Chem Inf Model; 2009 Jul; 49(7):1797-809. PubMed ID: 19552372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A semiempirical free energy force field with charge-based desolvation.
    Huey R; Morris GM; Olson AJ; Goodsell DS
    J Comput Chem; 2007 Apr; 28(6):1145-52. PubMed ID: 17274016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prediction of ligand binding affinity and orientation of xenoestrogens to the estrogen receptor by molecular dynamics simulations and the linear interaction energy method.
    van Lipzig MM; ter Laak AM; Jongejan A; Vermeulen NP; Wamelink M; Geerke D; Meerman JH
    J Med Chem; 2004 Feb; 47(4):1018-30. PubMed ID: 14761204
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of the binding energy for small molecules, peptides and proteins.
    Schapira M; Totrov M; Abagyan R
    J Mol Recognit; 1999; 12(3):177-90. PubMed ID: 10398408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding affinity prediction of non-peptide inhibitors of HIV-1 protease using COMBINE model introduced from peptide inhibitors.
    Nakamura S; Nakanishi I; Kitaura K
    Bioorg Med Chem Lett; 2006 Dec; 16(24):6334-7. PubMed ID: 17027266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An all atom energy based computational protocol for predicting binding affinities of protein-ligand complexes.
    Jain T; Jayaram B
    FEBS Lett; 2005 Dec; 579(29):6659-66. PubMed ID: 16307743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large-scale validation of a quantum mechanics based scoring function: predicting the binding affinity and the binding mode of a diverse set of protein-ligand complexes.
    Raha K; Merz KM
    J Med Chem; 2005 Jul; 48(14):4558-75. PubMed ID: 15999994
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping the binding site of a large set of quinazoline type EGF-R inhibitors using molecular field analyses and molecular docking studies.
    Hou T; Zhu L; Chen L; Xu X
    J Chem Inf Comput Sci; 2003; 43(1):273-87. PubMed ID: 12546563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of domain-peptide interaction interface: a case study on the amphiphysin-1 SH3 domain.
    Hou T; Zhang W; Case DA; Wang W
    J Mol Biol; 2008 Feb; 376(4):1201-14. PubMed ID: 18206907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel method for protein-ligand binding affinity prediction and the related descriptors exploration.
    Li S; Xi L; Wang C; Li J; Lei B; Liu H; Yao X
    J Comput Chem; 2009 Apr; 30(6):900-9. PubMed ID: 18785151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural parameterization of the binding enthalpy of small ligands.
    Luque I; Freire E
    Proteins; 2002 Nov; 49(2):181-90. PubMed ID: 12210999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SFCscore: scoring functions for affinity prediction of protein-ligand complexes.
    Sotriffer CA; Sanschagrin P; Matter H; Klebe G
    Proteins; 2008 Nov; 73(2):395-419. PubMed ID: 18442132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D-QSAR of human immunodeficiency virus (I) protease inhibitors. III. Interpretation of CoMFA results.
    Opera TI; Waller CL; Marshall GR
    Drug Des Discov; 1994 Jul; 12(1):29-51. PubMed ID: 7578806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PEARLS: program for energetic analysis of receptor-ligand system.
    Han LY; Lin HH; Li ZR; Zheng CJ; Cao ZW; Xie B; Chen YZ
    J Chem Inf Model; 2006; 46(1):445-50. PubMed ID: 16426079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative binding energy analysis for binding affinity and target selectivity prediction.
    Henrich S; Feierberg I; Wang T; Blomberg N; Wade RC
    Proteins; 2010 Jan; 78(1):135-53. PubMed ID: 19768680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.