These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 19705662)

  • 1. Sediment characterization during oxidation and ripening and evaluation of its potential reuse.
    Cappuyns V; Swennen R
    Environ Technol; 2009 Jul; 30(8):785-97. PubMed ID: 19705662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The importance of sulphide binding for leaching of heavy metals from contaminated Norwegian marine sediments treated by stabilization/solidification.
    Sparrevik M; Eek E; Grini RS
    Environ Technol; 2009 Jul; 30(8):831-40. PubMed ID: 19705667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of heavy metal concentrations in the sediments of three freshwater rivers in Huludao City, Northeast China.
    Zheng N; Wang Q; Liang Z; Zheng D
    Environ Pollut; 2008 Jul; 154(1):135-42. PubMed ID: 18280624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of ripening on pHstat leaching behaviour of heavy metals from dredged sediments.
    Cappuyns V; Swennen R; Devivier A
    J Environ Monit; 2004 Sep; 6(9):774-81. PubMed ID: 15346182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heavy metals in the surface sediments in Lanzhou Reach of Yellow River, China.
    Liu C; Xu J; Liu C; Zhang P; Dai M
    Bull Environ Contam Toxicol; 2009 Jan; 82(1):26-30. PubMed ID: 18806907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The application of pH(stat) leaching tests to assess the pH-dependent release of trace metals from soils, sediments and waste materials.
    Cappuyns V; Swennen R
    J Hazard Mater; 2008 Oct; 158(1):185-95. PubMed ID: 18313214
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequential extraction of heavy metals in river sediments of an abandoned pyrite mining area: pollution detection and affinity series.
    Pagnanelli F; Moscardini E; Giuliano V; Toro L
    Environ Pollut; 2004 Nov; 132(2):189-201. PubMed ID: 15312934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of flooding and metal immobilising soil amendments on availability of metals for willows and earthworms in calcareous dredged sediment-derived soils.
    Vandecasteele B; Du Laing G; Lettens S; Jordaens K; Tack FM
    Environ Pollut; 2010 Jun; 158(6):2181-8. PubMed ID: 20347195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heavy metals in coastal wetland sediments of the Pearl River Estuary, China.
    Li Q; Wu Z; Chu B; Zhang N; Cai S; Fang J
    Environ Pollut; 2007 Sep; 149(2):158-64. PubMed ID: 17321652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Declining metal levels at Foundry Cove (Hudson River, New York): response to localized dredging of contaminated sediments.
    Mackie JA; Natali SM; Levinton JS; Sañudo-Wilhelmy SA
    Environ Pollut; 2007 Sep; 149(2):141-8. PubMed ID: 17382440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heavy metal pollution and potential ecological risks in rivers: a case study from southern Italy.
    Protano C; Zinnà L; Giampaoli S; Romano Spica V; Chiavarini S; Vitali M
    Bull Environ Contam Toxicol; 2014 Jan; 92(1):75-80. PubMed ID: 24217626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in metal availability during sediment oxidation and the correlation with the immobilization potential.
    Prica M; Dalmacija B; Dalmacija M; Agbaba J; Krcmar D; Trickovic J; Karlovic E
    Ecotoxicol Environ Saf; 2010 Sep; 73(6):1370-7. PubMed ID: 20605048
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of sediment quality results with acid volatile sulfide (AVS) and simultaneously extracted metals (SEM) ratio in Vojvodina (Serbia) sediments.
    Prica M; Dalmacija B; Roncević S; Krcmar D; Becelić M
    Sci Total Environ; 2008 Jan; 389(2-3):235-44. PubMed ID: 17936333
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The remediation of heavy metals contaminated sediment.
    Peng JF; Song YH; Yuan P; Cui XY; Qiu GL
    J Hazard Mater; 2009 Jan; 161(2-3):633-40. PubMed ID: 18547718
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Correlations of extractable heavy metals with organic matters in contaminated river sediments.
    Tsai LJ; Ho ST; Yu KC
    Water Sci Technol; 2003; 47(9):101-7. PubMed ID: 12830947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal and metalloid contaminant availability in Yundang Lagoon sediments, Xiamen Bay, China, after 20 years continuous rehabilitation.
    Chen C; Lu Y; Hong J; Ye M; Wang Y; Lu H
    J Hazard Mater; 2010 Mar; 175(1-3):1048-55. PubMed ID: 19945221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ecological risk assessment of heavy metals from the surficial sediments of a shallow coastal lagoon, Egypt.
    Abdallah MA
    Environ Technol; 2011 Jul; 32(9-10):979-88. PubMed ID: 21882551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impacts of landscape remediation on the heavy metal pollution dynamics of a lake surrounded by non-ferrous smelter waste.
    Blake WH; Walsh RP; Reed JM; Barnsley MJ; Smith J
    Environ Pollut; 2007 Jul; 148(1):268-80. PubMed ID: 17276566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heavy metal stabilization in contaminated road-derived sediments.
    Rijkenberg MJ; Depree CV
    Sci Total Environ; 2010 Feb; 408(5):1212-20. PubMed ID: 20006898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential ecological risk assessment of heavy metal pollution in sediments of the Yangtze River within the Wanzhou section, China.
    Fu C; Guo J; Pan J; Qi J; Zhou W
    Biol Trace Elem Res; 2009; 129(1-3):270-7. PubMed ID: 19129985
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.