These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 1970567)

  • 1. Spermine stabilization of folded ribonuclease T1.
    Walz FG; Kitareewan S
    J Biol Chem; 1990 May; 265(13):7127-37. PubMed ID: 1970567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modification of Glu 58, an amino acid of the active center of ribonuclease T1, to Gln and Asp.
    Nishikawa S; Morioka H; Fuchimura K; Tanaka T; Uesugi S; Ohtsuka E; Ikehara M
    Biochem Biophys Res Commun; 1986 Jul; 138(2):789-94. PubMed ID: 2874806
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ribonuclease T1 is stabilized by cation and anion binding.
    Pace CN; Grimsley GR
    Biochemistry; 1988 May; 27(9):3242-6. PubMed ID: 3134046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contribution of histidine residues to the conformational stability of ribonuclease T1 and mutant Glu-58----Ala.
    McNutt M; Mullins LS; Raushel FM; Pace CN
    Biochemistry; 1990 Aug; 29(33):7572-6. PubMed ID: 1980207
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Folding of ribonuclease T1. 2. Kinetic models for the folding and unfolding reactions.
    Kiefhaber T; Quaas R; Hahn U; Schmid FX
    Biochemistry; 1990 Mar; 29(12):3061-70. PubMed ID: 2110824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal stabilization of ribonuclease T1 by carboxymethylation at Glu-58 as revealed by 1H nuclear magnetic resonance spectroscopy.
    Kojima M; Mizukoshi T; Miyano H; Suzuki E; Tanokura M; Takahashi K
    FEBS Lett; 1994 Sep; 351(3):389-92. PubMed ID: 7915996
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of the phenylalanine-22----leucine, glutamic acid-49----methionine, glycine-234----aspartic acid, and glycine-234----lysine mutations on the folding and stability of the alpha subunit of tryptophan synthase from Escherichia coli.
    Beasty AM; Hurle MR; Manz JT; Stackhouse T; Onuffer JJ; Matthews CR
    Biochemistry; 1986 May; 25(10):2965-74. PubMed ID: 2872918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of tryptic hydrolysis of the arginine-valine bond in folded and unfolded ribonuclease T1.
    Pace CN; Barrett AJ
    Biochem J; 1984 Apr; 219(2):411-7. PubMed ID: 6430267
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational stability and activity of ribonuclease T1 with zero, one, and two intact disulfide bonds.
    Pace CN; Grimsley GR; Thomson JA; Barnett BJ
    J Biol Chem; 1988 Aug; 263(24):11820-5. PubMed ID: 2457027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Folding of ribonuclease T1. 1. Existence of multiple unfolded states created by proline isomerization.
    Kiefhaber T; Quaas R; Hahn U; Schmid FX
    Biochemistry; 1990 Mar; 29(12):3053-61. PubMed ID: 2110823
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ribose recognition by ribonuclease T1: difference spectral binding studies with guanosine and deoxyguanosine.
    Walz FG
    Biochemistry; 1976 Oct; 15(20):4446-50. PubMed ID: 9971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics and motional dynamics of spin-labeled yeast iso-1-cytochrome c: 1. Stopped-flow electron paramagnetic resonance as a probe for protein folding/unfolding of the C-terminal helix spin-labeled at cysteine 102.
    Qu K; Vaughn JL; Sienkiewicz A; Scholes CP; Fetrow JS
    Biochemistry; 1997 Mar; 36(10):2884-97. PubMed ID: 9062118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A very fast phase in the refolding of disulfide-intact ribonuclease A: implications for the refolding and unfolding pathways.
    Houry WA; Rothwarf DM; Scheraga HA
    Biochemistry; 1994 Mar; 33(9):2516-30. PubMed ID: 8117713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamics of ribonuclease T1 denaturation.
    Hu CQ; Sturtevant JM; Thomson JA; Erickson RE; Pace CN
    Biochemistry; 1992 May; 31(20):4876-82. PubMed ID: 1591247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stabilization of a protein by guanidinium chloride.
    Mayr LM; Schmid FX
    Biochemistry; 1993 Aug; 32(31):7994-8. PubMed ID: 8347603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of a rapidly formed intermediate in ribonuclease T1 folding.
    Kiefhaber T; Schmid FX; Willaert K; Engelborghs Y; Chaffotte A
    Protein Sci; 1992 Sep; 1(9):1162-72. PubMed ID: 1304394
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Folding of horse cytochrome c in the reduced state.
    Bhuyan AK; Udgaonkar JB
    J Mol Biol; 2001 Oct; 312(5):1135-60. PubMed ID: 11580255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A thermodynamic coupling mechanism for GroEL-mediated unfolding.
    Walter S; Lorimer GH; Schmid FX
    Proc Natl Acad Sci U S A; 1996 Sep; 93(18):9425-30. PubMed ID: 8790346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intermediates in the refolding of ribonuclease at subzero temperatures. 3. Multiple folding pathways.
    Biringer RG; Fink AL
    Biochemistry; 1988 Jan; 27(1):315-25. PubMed ID: 3349035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two histidine residues are essential for ribonuclease T1 activity as is the case for ribonuclease A.
    Nishikawa S; Morioka H; Kim HJ; Fuchimura K; Tanaka T; Uesugi S; Hakoshima T; Tomita K; Ohtsuka E; Ikehara M
    Biochemistry; 1987 Dec; 26(26):8620-4. PubMed ID: 3126807
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.