BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

362 related articles for article (PubMed ID: 19705835)

  • 1. Engineered socket study of signaling through a four-helix bundle: evidence for a yin-yang mechanism in the kinase control module of the aspartate receptor.
    Swain KE; Gonzalez MA; Falke JJ
    Biochemistry; 2009 Oct; 48(39):9266-77. PubMed ID: 19705835
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preformed Soluble Chemoreceptor Trimers That Mimic Cellular Assembly States and Activate CheA Autophosphorylation.
    Greenswag AR; Li X; Borbat PP; Samanta D; Watts KJ; Freed JH; Crane BR
    Biochemistry; 2015 Jun; 54(22):3454-68. PubMed ID: 25967982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cysteine-scanning analysis of the chemoreceptor-coupling domain of the Escherichia coli chemotaxis signaling kinase CheA.
    Zhao J; Parkinson JS
    J Bacteriol; 2006 Jun; 188(12):4321-30. PubMed ID: 16740938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein footprinting in a complex milieu: identifying the interaction surfaces of the chemotaxis adaptor protein CheW.
    Underbakke ES; Zhu Y; Kiessling LL
    J Mol Biol; 2011 Jun; 409(4):483-95. PubMed ID: 21463637
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutational analysis of the chemoreceptor-coupling domain of the Escherichia coli chemotaxis signaling kinase CheA.
    Zhao J; Parkinson JS
    J Bacteriol; 2006 May; 188(9):3299-307. PubMed ID: 16621823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional structure and organization of a receptor/signaling complex.
    Francis NR; Wolanin PM; Stock JB; Derosier DJ; Thomas DR
    Proc Natl Acad Sci U S A; 2004 Dec; 101(50):17480-5. PubMed ID: 15572451
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence that both ligand binding and covalent adaptation drive a two-state equilibrium in the aspartate receptor signaling complex.
    Bornhorst JA; Falke JJ
    J Gen Physiol; 2001 Dec; 118(6):693-710. PubMed ID: 11723162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Attractant- and disulfide-induced conformational changes in the ligand binding domain of the chemotaxis aspartate receptor: a 19F NMR study.
    Danielson MA; Biemann HP; Koshland DE; Falke JJ
    Biochemistry; 1994 May; 33(20):6100-9. PubMed ID: 7910759
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crosslinking snapshots of bacterial chemoreceptor squads.
    Studdert CA; Parkinson JS
    Proc Natl Acad Sci U S A; 2004 Feb; 101(7):2117-22. PubMed ID: 14769919
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Yang W; Cassidy CK; Ames P; Diebolder CA; Schulten K; Luthey-Schulten Z; Parkinson JS; Briegel A
    mBio; 2019 Jul; 10(4):. PubMed ID: 31266867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for a Helix-Clutch Mechanism of Transmembrane Signaling in a Bacterial Chemoreceptor.
    Ames P; Hunter S; Parkinson JS
    J Mol Biol; 2016 Sep; 428(19):3776-88. PubMed ID: 27019297
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stability and Conformation of a Chemoreceptor HAMP Domain Chimera Correlates with Signaling Properties.
    Sukomon N; Widom J; Borbat PP; Freed JH; Crane BR
    Biophys J; 2017 Apr; 112(7):1383-1395. PubMed ID: 28402881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic analysis of the HAMP domain of the Aer aerotaxis sensor localizes flavin adenine dinucleotide-binding determinants to the AS-2 helix.
    Ma Q; Johnson MS; Taylor BL
    J Bacteriol; 2005 Jan; 187(1):193-201. PubMed ID: 15601703
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Substitutions in the periplasmic domain of low-abundance chemoreceptor trg that induce or reduce transmembrane signaling: kinase activation and context effects.
    Beel BD; Hazelbauer GL
    J Bacteriol; 2001 Jan; 183(2):671-9. PubMed ID: 11133962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Four-helix bundle: a ubiquitous sensory module in prokaryotic signal transduction.
    Ulrich LE; Zhulin IB
    Bioinformatics; 2005 Nov; 21 Suppl 3(Suppl 3):iii45-8. PubMed ID: 16306392
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolutionary genomics reveals conserved structural determinants of signaling and adaptation in microbial chemoreceptors.
    Alexander RP; Zhulin IB
    Proc Natl Acad Sci U S A; 2007 Feb; 104(8):2885-90. PubMed ID: 17299051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A nonequilibrium allosteric model for receptor-kinase complexes: The role of energy dissipation in chemotaxis signaling.
    Hathcock D; Yu Q; Mello BA; Amin DN; Hazelbauer GL; Tu Y
    Proc Natl Acad Sci U S A; 2023 Oct; 120(42):e2303115120. PubMed ID: 37824527
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacterial Chemoreceptor Dynamics: Helical Stability in the Cytoplasmic Domain Varies with Functional Segment and Adaptational Modification.
    Bartelli NL; Hazelbauer GL
    J Mol Biol; 2016 Sep; 428(19):3789-804. PubMed ID: 27318193
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptational modification and ligand occupancy have opposite effects on positioning of the transmembrane signalling helix of a chemoreceptor.
    Lai WC; Beel BD; Hazelbauer GL
    Mol Microbiol; 2006 Aug; 61(4):1081-90. PubMed ID: 16879656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generalizable strategy to analyze domains in the context of parent protein architecture: A CheW case study.
    Vass LR; Branscum KM; Bourret RB; Foster CA
    Proteins; 2022 Nov; 90(11):1973-1986. PubMed ID: 35668544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.