These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 19705843)

  • 21. Strategy to Identify Improved N-Terminal Modifications for Supramolecular Phenylalanine-Derived Hydrogelators.
    Abraham BL; Liyanage W; Nilsson BL
    Langmuir; 2019 Nov; 35(46):14939-14948. PubMed ID: 31664849
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular Co-Assembly of Two Building Blocks Harnesses Both their Attributes into a Functional Supramolecular Hydrogel.
    Chakraborty P; Aviv M; Netti F; Cohen-Gerassi D; Adler-Abramovich L
    Macromol Biosci; 2022 May; 22(5):e2100439. PubMed ID: 35133711
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of electrostatics and temperature on morphological transitions of hydrogel nanostructures self-assembled by peptide amphiphiles via molecular dynamics simulations.
    Fu IW; Markegard CB; Chu BK; Nguyen HD
    Adv Healthc Mater; 2013 Oct; 2(10):1388-400. PubMed ID: 23554376
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Preparation and characterization of a novel sodium alginate incorporated self-assembled Fmoc-FF composite hydrogel.
    Gong X; Branford-White C; Tao L; Li S; Quan J; Nie H; Zhu L
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():478-86. PubMed ID: 26478335
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exploiting enzymatic (reversed) hydrolysis in directed self-assembly of peptide nanostructures.
    Das AK; Collins R; Ulijn RV
    Small; 2008 Feb; 4(2):279-87. PubMed ID: 18214877
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tuning β-sheet peptide self-assembly and hydrogelation behavior by modification of sequence hydrophobicity and aromaticity.
    Bowerman CJ; Liyanage W; Federation AJ; Nilsson BL
    Biomacromolecules; 2011 Jul; 12(7):2735-45. PubMed ID: 21568346
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Self-assembled pH-responsive hydrogels composed of the RATEA16 peptide.
    Zhao Y; Yokoi H; Tanaka M; Kinoshita T; Tan T
    Biomacromolecules; 2008 Jun; 9(6):1511-8. PubMed ID: 18498190
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Unzipping the role of chirality in nanoscale self-assembly of tripeptide hydrogels.
    Marchesan S; Waddington L; Easton CD; Winkler DA; Goodall L; Forsythe J; Hartley PG
    Nanoscale; 2012 Nov; 4(21):6752-60. PubMed ID: 22955637
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Self-assembly of short peptides to form hydrogels: design of building blocks, physical properties and technological applications.
    Fichman G; Gazit E
    Acta Biomater; 2014 Apr; 10(4):1671-82. PubMed ID: 23958781
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis and primary characterization of self-assembled peptide-based hydrogels.
    Nagarkar RP; Schneider JP
    Methods Mol Biol; 2008; 474():61-77. PubMed ID: 19031061
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bi-functional peptide-based 3D hydrogel-scaffolds.
    Diaferia C; Netti F; Ghosh M; Sibillano T; Giannini C; Morelli G; Adler-Abramovich L; Accardo A
    Soft Matter; 2020 Aug; 16(30):7006-7017. PubMed ID: 32638818
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of C-terminal modification on the self-assembly and hydrogelation of fluorinated Fmoc-Phe derivatives.
    Ryan DM; Doran TM; Anderson SB; Nilsson BL
    Langmuir; 2011 Apr; 27(7):4029-39. PubMed ID: 21401045
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Extremely Stable Supramolecular Hydrogels Assembled from Nonionic Peptide Amphiphiles.
    Wan Y; Wang Z; Sun J; Li Z
    Langmuir; 2016 Aug; 32(30):7512-8. PubMed ID: 27399915
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A facile method to fabricate hydrogels with microchannel-like porosity for tissue engineering.
    Hammer J; Han LH; Tong X; Yang F
    Tissue Eng Part C Methods; 2014 Feb; 20(2):169-76. PubMed ID: 23745610
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Self-Assembling Peptides: From Design to Biomedical Applications.
    La Manna S; Di Natale C; Onesto V; Marasco D
    Int J Mol Sci; 2021 Nov; 22(23):. PubMed ID: 34884467
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Self-Assembled Injectable Peptide Hydrogels Capable of Triggering Antitumor Immune Response.
    Xing R; Li S; Zhang N; Shen G; Möhwald H; Yan X
    Biomacromolecules; 2017 Nov; 18(11):3514-3523. PubMed ID: 28721731
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Formation of macroporous self-assembled hydrogels through cryogelation of Fmoc-Phe-Phe.
    Berillo D; Mattiasson B; Galaev IY; Kirsebom H
    J Colloid Interface Sci; 2012 Feb; 368(1):226-30. PubMed ID: 22129632
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Physical hydrogels photo-cross-linked from self-assembled macromers for potential use in tissue engineering.
    Liu B; Lewis AK; Shen W
    Biomacromolecules; 2009 Dec; 10(12):3182-7. PubMed ID: 19919071
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural, mechanical, and biological characterization of hierarchical nanofibrous Fmoc-phenylalanine-valine hydrogels for 3D culture of differentiated and mesenchymal stem cells.
    Najafi H; Tamaddon AM; Abolmaali S; Borandeh S; Azarpira N
    Soft Matter; 2021 Jan; 17(1):57-67. PubMed ID: 33001116
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Physical hydrogels with self-assembled nanostructures as drug delivery systems.
    Tang Y; Heaysman CL; Willis S; Lewis AL
    Expert Opin Drug Deliv; 2011 Sep; 8(9):1141-59. PubMed ID: 21619469
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.