These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 19705960)

  • 1. Biomimetic modification of porous TiNbZr alloy scaffold for bone tissue engineering.
    Wang X; Li Y; Hodgson PD; Wen C
    Tissue Eng Part A; 2010 Jan; 16(1):309-16. PubMed ID: 19705960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Porous TiNbZr alloy scaffolds for biomedical applications.
    Wang X; Li Y; Xiong J; Hodgson PD; Wen C
    Acta Biomater; 2009 Nov; 5(9):3616-24. PubMed ID: 19505597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ti6Ta4Sn alloy and subsequent scaffolding for bone tissue engineering.
    Li Y; Xiong J; Wong CS; Hodgson PD; Wen C
    Tissue Eng Part A; 2009 Oct; 15(10):3151-9. PubMed ID: 19351266
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Replication and bioactivation of Ti-based alloy scaffold macroscopically identical to cancellous bone from polymeric template with TiNbZr powders.
    Rao X; Yang J; Li J; Feng X; Chen Z; Yuan Y; Yong B; Chu C; Tan X; Song Q
    J Mech Behav Biomed Mater; 2018 Dec; 88():296-304. PubMed ID: 30196185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel production method and in-vitro cell compatibility of porous Ti-6Al-4V alloy disk for hard tissue engineering.
    Bhattarai SR; Khalil KA; Dewidar M; Hwang PH; Yi HK; Kim HY
    J Biomed Mater Res A; 2008 Aug; 86(2):289-99. PubMed ID: 17957720
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spark plasma sintering synthesis of porous nanocrystalline titanium alloys for biomedical applications.
    Nicula R; Lüthen F; Stir M; Nebe B; Burkel E
    Biomol Eng; 2007 Nov; 24(5):564-7. PubMed ID: 17869173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation and characterization of a multilayer biomimetic scaffold for bone tissue engineering.
    Kong L; Ao Q; Wang A; Gong K; Wang X; Lu G; Gong Y; Zhao N; Zhang X
    J Biomater Appl; 2007 Nov; 22(3):223-39. PubMed ID: 17255157
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro biocompatibility, mechanical properties, and corrosion resistance of Ti-Zr-Nb-Ta-Pd and Ti-Sn-Nb-Ta-Pd alloys.
    Ito A; Okazaki Y; Tateishi T; Ito Y
    J Biomed Mater Res; 1995 Jul; 29(7):893-9. PubMed ID: 7593029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical properties and bioactive surface modification via alkali-heat treatment of a porous Ti-18Nb-4Sn alloy for biomedical applications.
    Xiong J; Li Y; Wang X; Hodgson P; Wen C
    Acta Biomater; 2008 Nov; 4(6):1963-8. PubMed ID: 18524702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication, characterization and in vitro biocompatibility evaluation of porous Ta-Nb alloy for bone tissue engineering.
    Wang H; Li J; Yang H; Liu C; Ruan J
    Mater Sci Eng C Mater Biol Appl; 2014 Jul; 40():71-5. PubMed ID: 24857467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bone formation on the apatite-coated zirconia porous scaffolds within a rabbit calvarial defect.
    Kim HW; Shin SY; Kim HE; Lee YM; Chung CP; Lee HH; Rhyu IC
    J Biomater Appl; 2008 May; 22(6):485-504. PubMed ID: 17494967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Titanium-nickel shape memory alloy foams for bone tissue engineering.
    Xiong JY; Li YC; Wang XJ; Hodgson PD; Wen CE
    J Mech Behav Biomed Mater; 2008 Jul; 1(3):269-73. PubMed ID: 19627791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrophobicity as a design criterion for polymer scaffolds in bone tissue engineering.
    Jansen EJ; Sladek RE; Bahar H; Yaffe A; Gijbels MJ; Kuijer R; Bulstra SK; Guldemond NA; Binderman I; Koole LH
    Biomaterials; 2005 Jul; 26(21):4423-31. PubMed ID: 15701371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel route in bone tissue engineering: magnetic biomimetic scaffolds.
    Bock N; Riminucci A; Dionigi C; Russo A; Tampieri A; Landi E; Goranov VA; Marcacci M; Dediu V
    Acta Biomater; 2010 Mar; 6(3):786-96. PubMed ID: 19788946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity.
    Lin CY; Kikuchi N; Hollister SJ
    J Biomech; 2004 May; 37(5):623-36. PubMed ID: 15046991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid prototyped porous titanium coated with calcium phosphate as a scaffold for bone tissue engineering.
    Lopez-Heredia MA; Sohier J; Gaillard C; Quillard S; Dorget M; Layrolle P
    Biomaterials; 2008 Jun; 29(17):2608-15. PubMed ID: 18358527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissolution control and cellular responses of calcium phosphate coatings on zirconia porous scaffold.
    Kim HW; Kim HE; Salih V; Knowles JC
    J Biomed Mater Res A; 2004 Mar; 68(3):522-30. PubMed ID: 14762932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of Zr content on the microstructure, mechanical properties and cell attachment of Ti-35Nb-xZr alloys.
    Ning C; Ding D; Dai K; Zhai W; Chen L
    Biomed Mater; 2010 Aug; 5(4):045006. PubMed ID: 20603527
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tissue engineering of bone: search for a better scaffold.
    Mastrogiacomo M; Muraglia A; Komlev V; Peyrin F; Rustichelli F; Crovace A; Cancedda R
    Orthod Craniofac Res; 2005 Nov; 8(4):277-84. PubMed ID: 16238608
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase composition, microstructure, and mechanical properties of porous Ti-Nb-Zr alloys prepared by a two-step foaming powder metallurgy method.
    Rao X; Chu CL; Zheng YY
    J Mech Behav Biomed Mater; 2014 Jun; 34():27-36. PubMed ID: 24556322
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.