These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Behavioral Role of the Reciprocal Inhibition between a Pair of Mauthner Cells during Fast Escapes in Zebrafish. Shimazaki T; Tanimoto M; Oda Y; Higashijima SI J Neurosci; 2019 Feb; 39(7):1182-1194. PubMed ID: 30578342 [TBL] [Abstract][Full Text] [Related]
4. Functional role of a specialized class of spinal commissural inhibitory neurons during fast escapes in zebrafish. Satou C; Kimura Y; Kohashi T; Horikawa K; Takeda H; Oda Y; Higashijima S J Neurosci; 2009 May; 29(21):6780-93. PubMed ID: 19474306 [TBL] [Abstract][Full Text] [Related]
5. In vivo imaging of zebrafish reveals differences in the spinal networks for escape and swimming movements. Ritter DA; Bhatt DH; Fetcho JR J Neurosci; 2001 Nov; 21(22):8956-65. PubMed ID: 11698606 [TBL] [Abstract][Full Text] [Related]
6. A commanding control of behavior. Thirumalai V; Cline HT Nat Neurosci; 2008 Mar; 11(3):246-8. PubMed ID: 18301430 [No Abstract] [Full Text] [Related]
7. Switching gears in the spinal cord. El Manira A; Grillner S Nat Neurosci; 2008 Dec; 11(12):1367-8. PubMed ID: 19023340 [No Abstract] [Full Text] [Related]
8. Grading movement strength by changes in firing intensity versus recruitment of spinal interneurons. Bhatt DH; McLean DL; Hale ME; Fetcho JR Neuron; 2007 Jan; 53(1):91-102. PubMed ID: 17196533 [TBL] [Abstract][Full Text] [Related]
9. Locomotor pattern in the adult zebrafish spinal cord in vitro. Gabriel JP; Mahmood R; Walter AM; Kyriakatos A; Hauptmann G; Calabrese RL; El Manira A J Neurophysiol; 2008 Jan; 99(1):37-48. PubMed ID: 17977928 [TBL] [Abstract][Full Text] [Related]
10. Continuous shifts in the active set of spinal interneurons during changes in locomotor speed. McLean DL; Masino MA; Koh IY; Lindquist WB; Fetcho JR Nat Neurosci; 2008 Dec; 11(12):1419-29. PubMed ID: 18997790 [TBL] [Abstract][Full Text] [Related]
11. Rhythmic motor activity evoked by NMDA in the spinal zebrafish larva. McDearmid JR; Drapeau P J Neurophysiol; 2006 Jan; 95(1):401-17. PubMed ID: 16207779 [TBL] [Abstract][Full Text] [Related]
12. A topographic map of recruitment in spinal cord. McLean DL; Fan J; Higashijima S; Hale ME; Fetcho JR Nature; 2007 Mar; 446(7131):71-5. PubMed ID: 17330042 [TBL] [Abstract][Full Text] [Related]
13. Intrinsic properties shape the firing pattern of ventral horn interneurons from the spinal cord of the adult turtle. Smith M; Perrier JF J Neurophysiol; 2006 Nov; 96(5):2670-7. PubMed ID: 16899634 [TBL] [Abstract][Full Text] [Related]
14. Spinal interneurons differentiate sequentially from those driving the fastest swimming movements in larval zebrafish to those driving the slowest ones. McLean DL; Fetcho JR J Neurosci; 2009 Oct; 29(43):13566-77. PubMed ID: 19864569 [TBL] [Abstract][Full Text] [Related]
15. Differences in the morphology of spinal V2a neurons reflect their recruitment order during swimming in larval zebrafish. Menelaou E; VanDunk C; McLean DL J Comp Neurol; 2014 Apr; 522(6):1232-48. PubMed ID: 24114934 [TBL] [Abstract][Full Text] [Related]
17. Shared versus specialized glycinergic spinal interneurons in axial motor circuits of larval zebrafish. Liao JC; Fetcho JR J Neurosci; 2008 Nov; 28(48):12982-92. PubMed ID: 19036991 [TBL] [Abstract][Full Text] [Related]
18. Physiological properties of the Mauthner system in the adult zebrafish. Hatta K; Korn H J Comp Neurol; 1998 Jun; 395(4):493-509. PubMed ID: 9619502 [TBL] [Abstract][Full Text] [Related]
19. The Mauthner cell and other identified neurons of the brainstem escape network of fish. Eaton RC; Lee RK; Foreman MB Prog Neurobiol; 2001 Mar; 63(4):467-85. PubMed ID: 11163687 [TBL] [Abstract][Full Text] [Related]
20. Spinal network of the Mauthner cell. Fetcho JR Brain Behav Evol; 1991; 37(5):298-316. PubMed ID: 1933252 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]