These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
23. Continued inhalation of lidocaine suppresses antigen-induced airway hyperreactivity and airway inflammation in ovalbumin-sensitized guinea pigs. Muraki M; Iwanaga T; Haraguchi R; Kubo H; Tohda Y Int Immunopharmacol; 2008 May; 8(5):725-31. PubMed ID: 18387515 [TBL] [Abstract][Full Text] [Related]
24. [Protective effects of ketamine on allergen-induced airway inflammatory injure and high airway reactivity in asthma: experiment with rats]. Zhu MM; Qian YN; Zhu W; Xu YM; Rong HB; Ding ZN; Fu CZ Zhonghua Yi Xue Za Zhi; 2007 May; 87(19):1308-13. PubMed ID: 17727773 [TBL] [Abstract][Full Text] [Related]
25. Effects of exercise training and montelukast in children with mild asthma. Bonsignore MR; La Grutta S; Cibella F; Scichilone N; Cuttitta G; Interrante A; Marchese M; Veca M; Virzi' M; Bonanno A; Profita M; Morici G Med Sci Sports Exerc; 2008 Mar; 40(3):405-12. PubMed ID: 18379200 [TBL] [Abstract][Full Text] [Related]
26. Effect of a cysteinyl leukotriene receptor antagonist on experimental emphysema and asthma combined with emphysema. Ikeda G; Miyahara N; Koga H; Fuchimoto Y; Waseda K; Kurimoto E; Taniguchi A; Tanimoto Y; Kataoka M; Tanimoto M; Kanehiro A Am J Respir Cell Mol Biol; 2014 Jan; 50(1):18-29. PubMed ID: 23937413 [TBL] [Abstract][Full Text] [Related]
27. Review of recent results of montelukast use as a monotherapy in children with mild asthma. Wahn U; Dass SB Clin Ther; 2008; 30 Spec No():1026-35. PubMed ID: 18640477 [TBL] [Abstract][Full Text] [Related]
28. Pharmacology of montelukast sodium (Singulair), a potent and selective leukotriene D4 receptor antagonist. Jones TR; Labelle M; Belley M; Champion E; Charette L; Evans J; Ford-Hutchinson AW; Gauthier JY; Lord A; Masson P Can J Physiol Pharmacol; 1995 Feb; 73(2):191-201. PubMed ID: 7621356 [TBL] [Abstract][Full Text] [Related]
29. Effects of ONO-6950, a novel dual cysteinyl leukotriene 1 and 2 receptors antagonist, in a guinea pig model of asthma. Yonetomi Y; Sekioka T; Kadode M; Kitamine T; Kamiya A; inoue A; Nakao T; Nomura H; Murata M; Nakao S; Nambu F; Fujita M; Nakade S; Kawabata K Eur J Pharmacol; 2015 Oct; 765():242-8. PubMed ID: 26318198 [TBL] [Abstract][Full Text] [Related]
30. Studies of receptors and modulatory mechanisms in functional responses to cysteinyl-leukotrienes in smooth muscle. Bäck M Acta Physiol Scand Suppl; 2002 Feb; 648():1-55. PubMed ID: 11913222 [TBL] [Abstract][Full Text] [Related]
31. Functional characterisation of receptors for cysteinyl leukotrienes in smooth muscle. Jonsson EW Acta Physiol Scand Suppl; 1998 Mar; 641():1-55. PubMed ID: 9597121 [TBL] [Abstract][Full Text] [Related]
32. Montelukast prevents the decrease of interleukin-10 and inhibits NF-kappaB activation in inflammatory airway of asthmatic guinea pigs. Wu Y; Zhou C; Tao J; Li S Can J Physiol Pharmacol; 2006 May; 84(5):531-7. PubMed ID: 16902598 [TBL] [Abstract][Full Text] [Related]
33. Effects of the cysteinyl leukotriene receptor antagonists pranlukast and zafirlukast on tracheal mucus secretion in ovalbumin-sensitized guinea-pigs in vitro. Liu YC; Khawaja AM; Rogers DF Br J Pharmacol; 1998 Jun; 124(3):563-71. PubMed ID: 9647482 [TBL] [Abstract][Full Text] [Related]
34. Pharmacology of leukotriene receptor antagonists. Aharony D Am J Respir Crit Care Med; 1998 Jun; 157(6 Pt 2):S214-8; discussion S218-9, S247-8. PubMed ID: 9647602 [TBL] [Abstract][Full Text] [Related]
35. Concomitant activity of histamine and cysteinyl leukotrienes on porcine nasal mucosal vessels and nasal inflammation in the rat. Lieber G; Jimenez J; Hunter JC; McLeod RL; Jia Y Pharmacology; 2010; 85(5):311-8. PubMed ID: 20453555 [TBL] [Abstract][Full Text] [Related]
36. Effects of montelukast and budesonide on airway responses and airway inflammation in asthma. Leigh R; Vethanayagam D; Yoshida M; Watson RM; Rerecich T; Inman MD; O'Byrne PM Am J Respir Crit Care Med; 2002 Nov; 166(9):1212-7. PubMed ID: 12403690 [TBL] [Abstract][Full Text] [Related]
37. Role of chemical mediators in airway hyperresponsiveness in an asthmatic model. Tohda Y; Muraki M; Kubo H; Itoh M; Haraguchi R; Nakajima S; Fukuoka M Respiration; 2001; 68(1):73-7. PubMed ID: 11223734 [TBL] [Abstract][Full Text] [Related]
38. The inhibitory effect of TMK688, a novel anti-allergic drug having both 5-lipoxygenase inhibitory activity and anti-histamine activity, against bronchoconstriction, leukotriene production and inflammatory cell infiltration in sensitized guinea pigs. Tohda Y; Nakajima S; Shizawa T; Maeda K; Ohmori S; Satoh H; Ishii T; Kamitani T Clin Exp Allergy; 1997 Jan; 27(1):110-8. PubMed ID: 9117875 [TBL] [Abstract][Full Text] [Related]
39. Bradykinin-induced lung inflammation and bronchoconstriction: role in parainfluenze-3 virus-induced inflammation and airway hyperreactivity. Broadley KJ; Blair AE; Kidd EJ; Bugert JJ; Ford WR J Pharmacol Exp Ther; 2010 Dec; 335(3):681-92. PubMed ID: 20847038 [TBL] [Abstract][Full Text] [Related]
40. Effects of montelukast, a cysteinyl-leukotriene type 1 receptor antagonist, on the pathogenesis of bleomycin-induced pulmonary fibrosis in mice. Shimbori C; Shiota N; Okunishi H Eur J Pharmacol; 2011 Jan; 650(1):424-30. PubMed ID: 21034736 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]