These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
94 related articles for article (PubMed ID: 19706367)
41. Performance of genotype imputation for low frequency and rare variants from the 1000 genomes. Zheng HF; Rong JJ; Liu M; Han F; Zhang XW; Richards JB; Wang L PLoS One; 2015; 10(1):e0116487. PubMed ID: 25621886 [TBL] [Abstract][Full Text] [Related]
42. Strategies for single nucleotide polymorphism (SNP) genotyping to enhance genotype imputation in Gyr (Bos indicus) dairy cattle: Comparison of commercially available SNP chips. Boison SA; Santos DJ; Utsunomiya AH; Carvalheiro R; Neves HH; O'Brien AM; Garcia JF; Sölkner J; da Silva MV J Dairy Sci; 2015 Jul; 98(7):4969-89. PubMed ID: 25958293 [TBL] [Abstract][Full Text] [Related]
43. Designing genome-wide association studies: sample size, power, imputation, and the choice of genotyping chip. Spencer CC; Su Z; Donnelly P; Marchini J PLoS Genet; 2009 May; 5(5):e1000477. PubMed ID: 19492015 [TBL] [Abstract][Full Text] [Related]
44. Fast imputation using medium or low-coverage sequence data. VanRaden PM; Sun C; O'Connell JR BMC Genet; 2015 Jul; 16():82. PubMed ID: 26168789 [TBL] [Abstract][Full Text] [Related]
45. "GenotypeColour": colour visualisation of SNPs and CNVs. Barlati S; Chiesa S; Magri C BMC Bioinformatics; 2009 Feb; 10():49. PubMed ID: 19193232 [TBL] [Abstract][Full Text] [Related]
46. SNPselector: a web tool for selecting SNPs for genetic association studies. Xu H; Gregory SG; Hauser ER; Stenger JE; Pericak-Vance MA; Vance JM; Züchner S; Hauser MA Bioinformatics; 2005 Nov; 21(22):4181-6. PubMed ID: 16179360 [TBL] [Abstract][Full Text] [Related]
47. SNPHunter: a bioinformatic software for single nucleotide polymorphism data acquisition and management. Wang L; Liu S; Niu T; Xu X BMC Bioinformatics; 2005 Mar; 6():60. PubMed ID: 15774022 [TBL] [Abstract][Full Text] [Related]
48. Highly Accurate and Efficient Data-Driven Methods for Genotype Imputation. Choudhury O; Chakrabarty A; Emrich SJ IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(4):1107-1116. PubMed ID: 28574365 [TBL] [Abstract][Full Text] [Related]
49. Genotype imputation in case-only studies of gene-environment interaction: validity and power. Aleknonytė-Resch M; Szymczak S; Freitag-Wolf S; Dempfle A; Krawczak M Hum Genet; 2021 Aug; 140(8):1217-1228. PubMed ID: 34041609 [TBL] [Abstract][Full Text] [Related]
50. Web-based primer design software for genome-scale genotyping by pyrosequencing. Ringquist S; Pecoraro C; Lu Y; Styche A; Rudert WA; Benos PV; Trucco M Methods Mol Biol; 2007; 373():25-38. PubMed ID: 17185755 [TBL] [Abstract][Full Text] [Related]
51. Accuracy of genotype imputation based on random and selected reference sets in purebred and crossbred sheep populations and its effect on accuracy of genomic prediction. Moghaddar N; Gore KP; Daetwyler HD; Hayes BJ; van der Werf JH Genet Sel Evol; 2015 Dec; 47():97. PubMed ID: 26694131 [TBL] [Abstract][Full Text] [Related]
52. Combining functional and linkage disequilibrium information in the selection of tag SNPs. Sham PC; Ao SI; Kwan JS; Kao P; Cheung F; Fong PY; Ng MK Bioinformatics; 2007 Jan; 23(1):129-31. PubMed ID: 17060359 [TBL] [Abstract][Full Text] [Related]
53. Accuracy of genotype imputation in sheep breeds. Hayes BJ; Bowman PJ; Daetwyler HD; Kijas JW; van der Werf JH Anim Genet; 2012 Feb; 43(1):72-80. PubMed ID: 22221027 [TBL] [Abstract][Full Text] [Related]
54. Usability study of clinical exome analysis software: top lessons learned and recommendations. Shyr C; Kushniruk A; Wasserman WW J Biomed Inform; 2014 Oct; 51():129-36. PubMed ID: 24860971 [TBL] [Abstract][Full Text] [Related]
55. Comparisons of improved genomic predictions generated by different imputation methods for genotyping by sequencing data in livestock populations. Wang X; Su G; Hao D; Lund MS; Kadarmideen HN J Anim Sci Biotechnol; 2020; 11():3. PubMed ID: 31921417 [TBL] [Abstract][Full Text] [Related]
56. An Automated Method To Predict Mouse Gene and Protein Sequences Using Variant Data. Dornbos P; Arkatkar AA; LaPres JJ G3 (Bethesda); 2020 Mar; 10(3):925-932. PubMed ID: 31911484 [TBL] [Abstract][Full Text] [Related]
57. Improving genomic predictions by correction of genotypes from genotyping by sequencing in livestock populations. Wang X; Lund MS; Ma P; Janss L; Kadarmideen HN; Su G J Anim Sci Biotechnol; 2019; 10():8. PubMed ID: 30719286 [TBL] [Abstract][Full Text] [Related]
58. Whole genome SNP genotype piecemeal imputation. Wang Y; Wylie T; Stothard P; Lin G BMC Bioinformatics; 2015 Oct; 16():340. PubMed ID: 26498158 [TBL] [Abstract][Full Text] [Related]
59. Scanning and Filling: Ultra-Dense SNP Genotyping Combining Genotyping-By-Sequencing, SNP Array and Whole-Genome Resequencing Data. Torkamaneh D; Belzile F PLoS One; 2015; 10(7):e0131533. PubMed ID: 26161900 [TBL] [Abstract][Full Text] [Related]
60. Imputation and quality control steps for combining multiple genome-wide datasets. Verma SS; de Andrade M; Tromp G; Kuivaniemi H; Pugh E; Namjou-Khales B; Mukherjee S; Jarvik GP; Kottyan LC; Burt A; Bradford Y; Armstrong GD; Derr K; Crawford DC; Haines JL; Li R; Crosslin D; Ritchie MD Front Genet; 2014; 5():370. PubMed ID: 25566314 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]