BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 19706371)

  • 1. Role of 14-3-3 protein and oxidative stress in diabetic cardiomyopathy.
    Watanabe K; Thandavarayan RA; Gurusamy N; Zhang S; Muslin AJ; Suzuki K; Tachikawa H; Kodama M; Aizawa Y
    Acta Physiol Hung; 2009 Sep; 96(3):277-87. PubMed ID: 19706371
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glycogen synthase kinase 3beta together with 14-3-3 protein regulates diabetic cardiomyopathy: effect of losartan and tempol.
    Gurusamy N; Watanabe K; Ma M; Prakash P; Hirabayashi K; Zhang S; Muslin AJ; Kodama M; Aizawa Y
    FEBS Lett; 2006 Apr; 580(8):1932-40. PubMed ID: 16530186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidative stress: a key contributor to diabetic cardiomyopathy.
    Khullar M; Al-Shudiefat AA; Ludke A; Binepal G; Singal PK
    Can J Physiol Pharmacol; 2010 Mar; 88(3):233-40. PubMed ID: 20393588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of differential signaling pathways and oxidative stress in diabetic cardiomyopathy.
    Watanabe K; Thandavarayan RA; Harima M; Sari FR; Gurusamy N; Veeraveedu PT; Mito S; Arozal W; Sukumaran V; Laksmanan AP; Soetikno V; Kodama M; Aizawa Y
    Curr Cardiol Rev; 2010 Nov; 6(4):280-90. PubMed ID: 22043204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 14-3-3 protein regulates Ask1 signaling and protects against diabetic cardiomyopathy.
    Thandavarayan RA; Watanabe K; Ma M; Veeraveedu PT; Gurusamy N; Palaniyandi SS; Zhang S; Muslin AJ; Kodama M; Aizawa Y
    Biochem Pharmacol; 2008 May; 75(9):1797-806. PubMed ID: 18342293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interplay between impaired calcium regulation and insulin signaling abnormalities in diabetic cardiomyopathy.
    Lebeche D; Davidoff AJ; Hajjar RJ
    Nat Clin Pract Cardiovasc Med; 2008 Nov; 5(11):715-24. PubMed ID: 18813212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative stress and diabetic cardiomyopathy: a brief review.
    Cai L; Kang YJ
    Cardiovasc Toxicol; 2001; 1(3):181-93. PubMed ID: 12213971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metallothionein suppresses angiotensin II-induced nicotinamide adenine dinucleotide phosphate oxidase activation, nitrosative stress, apoptosis, and pathological remodeling in the diabetic heart.
    Zhou G; Li X; Hein DW; Xiang X; Marshall JP; Prabhu SD; Cai L
    J Am Coll Cardiol; 2008 Aug; 52(8):655-66. PubMed ID: 18702970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diabetic cardiomyopathy: mechanisms and new treatment strategies targeting antioxidant signaling pathways.
    Huynh K; Bernardo BC; McMullen JR; Ritchie RH
    Pharmacol Ther; 2014 Jun; 142(3):375-415. PubMed ID: 24462787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diabetic cardiomyopathy and oxidative stress: role of antioxidants.
    Thandavarayan RA; Giridharan VV; Watanabe K; Konishi T
    Cardiovasc Hematol Agents Med Chem; 2011 Oct; 9(4):225-30. PubMed ID: 21902660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evidence for a causal role of oxidative stress in the myocardial complications of insulin resistance.
    Ritchie RH
    Heart Lung Circ; 2009 Feb; 18(1):11-8. PubMed ID: 19119069
    [No Abstract]   [Full Text] [Related]  

  • 12. Oxidative stress and stress signaling: menace of diabetic cardiomyopathy.
    Wold LE; Ceylan-Isik AF; Ren J
    Acta Pharmacol Sin; 2005 Aug; 26(8):908-17. PubMed ID: 16038622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deficiency of senescence marker protein 30 exacerbates angiotensin II-induced cardiac remodelling.
    Misaka T; Suzuki S; Miyata M; Kobayashi A; Shishido T; Ishigami A; Saitoh S; Hirose M; Kubota I; Takeishi Y
    Cardiovasc Res; 2013 Aug; 99(3):461-70. PubMed ID: 23723062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The pathogenesis of myocardial fibrosis in the setting of diabetic cardiomyopathy.
    Asbun J; Villarreal FJ
    J Am Coll Cardiol; 2006 Feb; 47(4):693-700. PubMed ID: 16487830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Attenuation by metallothionein of early cardiac cell death via suppression of mitochondrial oxidative stress results in a prevention of diabetic cardiomyopathy.
    Cai L; Wang Y; Zhou G; Chen T; Song Y; Li X; Kang YJ
    J Am Coll Cardiol; 2006 Oct; 48(8):1688-97. PubMed ID: 17045908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Diabetic cardiomyopathy].
    Huang YQ; Wang X; Kong W
    Sheng Li Ke Xue Jin Zhan; 2010 Feb; 41(1):31-6. PubMed ID: 21417012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phospholipid-mediated signaling systems as novel targets for treatment of heart disease.
    Tappia PS
    Can J Physiol Pharmacol; 2007 Jan; 85(1):25-41. PubMed ID: 17487243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An overview of the crosstalk between inflammatory processes and metabolic dysregulation during diabetic cardiomyopathy.
    Palomer X; Salvadó L; Barroso E; Vázquez-Carrera M
    Int J Cardiol; 2013 Oct; 168(4):3160-72. PubMed ID: 23932046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glycolaldehyde induces oxidative stress in the heart: a clue to diabetic cardiomyopathy?
    Lorenzi R; Andrades ME; Bortolin RC; Nagai R; Dal-Pizzol F; Moreira JC
    Cardiovasc Toxicol; 2010 Dec; 10(4):244-9. PubMed ID: 20632216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Taxifolin prevents diabetic cardiomyopathy in vivo and in vitro by inhibition of oxidative stress and cell apoptosis.
    Sun X; Chen RC; Yang ZH; Sun GB; Wang M; Ma XJ; Yang LJ; Sun XB
    Food Chem Toxicol; 2014 Jan; 63():221-32. PubMed ID: 24269735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.