These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 19706430)

  • 1. The physical basis for increases in precipitation extremes in simulations of 21st-century climate change.
    O'Gorman PA; Schneider T
    Proc Natl Acad Sci U S A; 2009 Sep; 106(35):14773-7. PubMed ID: 19706430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Precipitation Extremes Under Climate Change.
    O'Gorman PA
    Curr Clim Change Rep; 2015; 1(2):49-59. PubMed ID: 26312211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Response of extreme precipitation to uniform surface warming in quasi-global aquaplanet simulations at high resolution.
    O'Gorman PA; Li Z; Boos WR; Yuval J
    Philos Trans A Math Phys Eng Sci; 2021 Apr; 379(2195):20190543. PubMed ID: 33641467
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Precipitation extreme changes exceeding moisture content increases in MIROC and IPCC climate models.
    Sugiyama M; Shiogama H; Emori S
    Proc Natl Acad Sci U S A; 2010 Jan; 107(2):571-5. PubMed ID: 20080720
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advances in understanding large-scale responses of the water cycle to climate change.
    Allan RP; Barlow M; Byrne MP; Cherchi A; Douville H; Fowler HJ; Gan TY; Pendergrass AG; Rosenfeld D; Swann ALS; Wilcox LJ; Zolina O
    Ann N Y Acad Sci; 2020 Jul; 1472(1):49-75. PubMed ID: 32246848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in climate extremes, fresh water availability and vulnerability to food insecurity projected at 1.5°C and 2°C global warming with a higher-resolution global climate model.
    Betts RA; Alfieri L; Bradshaw C; Caesar J; Feyen L; Friedlingstein P; Gohar L; Koutroulis A; Lewis K; Morfopoulos C; Papadimitriou L; Richardson KJ; Tsanis I; Wyser K
    Philos Trans A Math Phys Eng Sci; 2018 May; 376(2119):. PubMed ID: 29610383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation and Future Projection of Extreme Climate Events in the Yellow River Basin and Yangtze River Basin in China Using Ensembled CMIP5 Models Data.
    Niu Z; Feng L; Chen X; Yi X
    Int J Environ Res Public Health; 2021 Jun; 18(11):. PubMed ID: 34205168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic amplification of extreme precipitation sensitivity.
    Nie J; Sobel AH; Shaevitz DA; Wang S
    Proc Natl Acad Sci U S A; 2018 Sep; 115(38):9467-9472. PubMed ID: 30181273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Climate change and hydrological regime of the high-altitude Indus basin under extreme climate scenarios.
    Dahri ZH; Ludwig F; Moors E; Ahmad S; Ahmad B; Ahmad S; Riaz M; Kabat P
    Sci Total Environ; 2021 May; 768():144467. PubMed ID: 33454464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Future changes in hydro-climatic extremes in the Upper Indus, Ganges, and Brahmaputra River basins.
    Wijngaard RR; Lutz AF; Nepal S; Khanal S; Pradhananga S; Shrestha AB; Immerzeel WW
    PLoS One; 2017; 12(12):e0190224. PubMed ID: 29287098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Climate Change Impacts on the Upper Indus Hydrology: Sources, Shifts and Extremes.
    Lutz AF; Immerzeel WW; Kraaijenbrink PD; Shrestha AB; Bierkens MF
    PLoS One; 2016; 11(11):e0165630. PubMed ID: 27828994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scaling and responses of extreme hourly precipitation in three climate experiments with a convection-permitting model.
    Lenderink G; de Vries H; Fowler HJ; Barbero R; van Ulft B; van Meijgaard E
    Philos Trans A Math Phys Eng Sci; 2021 Apr; 379(2195):20190544. PubMed ID: 33641466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Future extreme climate changes linked to global warming intensity.
    Wang X; Jiang D; Lang X
    Sci Bull (Beijing); 2017 Dec; 62(24):1673-1680. PubMed ID: 36659388
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Global concurrent climate extremes exacerbated by anthropogenic climate change.
    Zhou S; Yu B; Zhang Y
    Sci Adv; 2023 Mar; 9(10):eabo1638. PubMed ID: 36897946
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Future precipitation changes over China under 1.5 °C and 2.0 °C global warming targets by using CORDEX regional climate models.
    Li H; Chen H; Wang H; Yu E
    Sci Total Environ; 2018 Nov; 640-641():543-554. PubMed ID: 29864667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid decadal convective precipitation increase over Eurasia during the last three decades of the 20th century.
    Ye H; Fetzer EJ; Wong S; Lambrigtsen BH
    Sci Adv; 2017 Jan; 3(1):e1600944. PubMed ID: 28138545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Future changes in the intensity and frequency of precipitation extremes over China in a warmer world: Insight from a large ensemble.
    Li Y; Bai J; You Z; Hou J; Li W
    PLoS One; 2021; 16(5):e0252133. PubMed ID: 34029349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Global response of terrestrial gross primary productivity to climate extremes.
    Yuan M; Zhu Q; Zhang J; Liu J; Chen H; Peng C; Li P; Li M; Wang M; Zhao P
    Sci Total Environ; 2021 Jan; 750():142337. PubMed ID: 33182195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human contribution to more-intense precipitation extremes.
    Min SK; Zhang X; Zwiers FW; Hegerl GC
    Nature; 2011 Feb; 470(7334):378-81. PubMed ID: 21331039
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Climatology and changes in hourly precipitation extremes over China during 1970-2018.
    Li X; Zhang K; Bao H; Zhang H
    Sci Total Environ; 2022 Sep; 839():156297. PubMed ID: 35636542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.