These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 1970644)

  • 1. The structure of bacteriorhodopsin and its relevance to the visual opsins and other seven-helix G-protein coupled receptors.
    Henderson R; Schertler GF
    Philos Trans R Soc Lond B Biol Sci; 1990 Jan; 326(1236):379-89. PubMed ID: 1970644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analogies between halorhodopsin and bacteriorhodopsin.
    Váró G
    Biochim Biophys Acta; 2000 Aug; 1460(1):220-9. PubMed ID: 10984602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacterioopsin, haloopsin, and sensory opsin I of the halobacterial isolate Halobacterium sp. strain SG1: three new members of a growing family.
    Soppa J; Duschl J; Oesterhelt D
    J Bacteriol; 1993 May; 175(9):2720-6. PubMed ID: 8478333
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequence homology between bacteriorhodopsin and G-protein coupled receptors: exon shuffling or evolution by duplication?
    Taylor EW; Agarwal A
    FEBS Lett; 1993 Jul; 325(3):161-6. PubMed ID: 8319802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The novel ion pump rhodopsins from Haloarcula form a family independent from both the bacteriorhodopsin and archaerhodopsin families/tribes.
    Tateno M; Ihara K; Mukohata Y
    Arch Biochem Biophys; 1994 Nov; 315(1):127-32. PubMed ID: 7979388
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conformational changes in sensory rhodopsin I: similarities and differences with bacteriorhodopsin, halorhodopsin, and rhodopsin.
    Bousché O; Spudich EN; Spudich JL; Rothschild KJ
    Biochemistry; 1991 Jun; 30(22):5395-400. PubMed ID: 2036407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolution of the archaeal rhodopsins: evolution rate changes by gene duplication and functional differentiation.
    Ihara K; Umemura T; Katagiri I; Kitajima-Ihara T; Sugiyama Y; Kimura Y; Mukohata Y
    J Mol Biol; 1999 Jan; 285(1):163-74. PubMed ID: 9878396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conserved amino acids in F-helix of bacteriorhodopsin form part of a retinal binding pocket.
    Rothschild KJ; Braiman MS; Mogi T; Stern LJ; Khorana HG
    FEBS Lett; 1989 Jul; 250(2):448-52. PubMed ID: 2753143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two hypotheses--one answer. Sequence comparison does not support an evolutionary link between halobacterial retinal proteins including bacteriorhodopsin and eukaryotic G-protein-coupled receptors.
    Soppa J
    FEBS Lett; 1994 Mar; 342(1):7-11. PubMed ID: 8143852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel bacterial rhodopsins from Haloarcula vallismortis.
    Kitajima T; Hirayama J; Ihara K; Sugiyama Y; Kamo N; Mukohata Y
    Biochem Biophys Res Commun; 1996 Mar; 220(2):341-5. PubMed ID: 8645307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The opsins.
    Terakita A
    Genome Biol; 2005; 6(3):213. PubMed ID: 15774036
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two pumps, one principle: light-driven ion transport in halobacteria.
    Oesterhelt D; Tittor J
    Trends Biochem Sci; 1989 Feb; 14(2):57-61. PubMed ID: 2468194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the use of the transmembrane domain of bacteriorhodopsin as a template for modeling the three-dimensional structure of guanine nucleotide-binding regulatory protein-coupled receptors.
    Pardo L; Ballesteros JA; Osman R; Weinstein H
    Proc Natl Acad Sci U S A; 1992 May; 89(9):4009-12. PubMed ID: 1315046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure-function studies on bacteriorhodopsin. IX. Substitutions of tryptophan residues affect protein-retinal interactions in bacteriorhodopsin.
    Mogi T; Marti T; Khorana HG
    J Biol Chem; 1989 Aug; 264(24):14197-201. PubMed ID: 2547787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The halo-opsin gene. II. Sequence, primary structure of halorhodopsin and comparison with bacteriorhodopsin.
    Blanck A; Oesterhelt D
    EMBO J; 1987 Jan; 6(1):265-73. PubMed ID: 15981336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling of halorhodopsin and rhodopsin based on bacteriorhodopsin.
    Neumüller M; Jähnig F
    Proteins; 1996 Oct; 26(2):146-56. PubMed ID: 8916222
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies on light transduction by bacteriorhodopsin and rhodopsin.
    Braiman M; Bubis J; Doi T; Chen HB; Flitsch SL; Franke RR; Gilles-Gonzalez MA; Graham RM; Karnik SS; Khorana HG
    Cold Spring Harb Symp Quant Biol; 1988; 53 Pt 1():355-64. PubMed ID: 3076084
    [No Abstract]   [Full Text] [Related]  

  • 18. Sequence divergence analysis for the prediction of seven-helix membrane protein structures: I. Comparison with bacteriorhodopsin.
    Du P; Alkorta I
    Protein Eng; 1994 Oct; 7(10):1221-9. PubMed ID: 7855137
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated method for modeling seven-helix transmembrane receptors from experimental data.
    Herzyk P; Hubbard RE
    Biophys J; 1995 Dec; 69(6):2419-42. PubMed ID: 8599649
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling of G-protein-coupled receptors: application to dopamine, adrenaline, serotonin, acetylcholine, and mammalian opsin receptors.
    Trumpp-Kallmeyer S; Hoflack J; Bruinvels A; Hibert M
    J Med Chem; 1992 Sep; 35(19):3448-62. PubMed ID: 1328638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.