These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 1970645)

  • 41. Selective NMR observation of inhibitor and sugar binding to the galactose-H(+) symport protein GalP, of Escherichia coli.
    Appleyard AN; Herbert RB; Henderson PJ; Watts A; Spooner PJ
    Biochim Biophys Acta; 2000 Dec; 1509(1-2):55-64. PubMed ID: 11118517
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Molecular mechanisms of sugar transport across mammalian and microbial cell membranes.
    Baldwin SA
    Biotechnol Appl Biochem; 1990 Oct; 12(5):512-6. PubMed ID: 2288705
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A comparison of the amino-terminal sequences of several carbohydrate binding proteins from Escherichia coli and Salmonella typhimurium.
    Hogg RW; Isihara H; Hermodson MA; Koshland D; Jacobs JW; Bradshaw RA
    FEBS Lett; 1977 Aug; 80(2):377-9. PubMed ID: 330247
    [No Abstract]   [Full Text] [Related]  

  • 44. The homologous glucose transport proteins of prokaryotes and eukaryotes.
    Henderson PJ
    Res Microbiol; 1990; 141(3):316-28. PubMed ID: 2177911
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Altered sugar selection and transport conferred by spontaneous point and deletion mutations in the lactose carrier of Escherichia coli.
    Shinnick SG; Varela MF
    J Membr Biol; 2002 Oct; 189(3):191-9. PubMed ID: 12395284
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Identification of the GalP galactose transport protein of Escherichia coli.
    Macpherson AJ; Jones-Mortimer MC; Horne P; Henderson PJ
    J Biol Chem; 1983 Apr; 258(7):4390-6. PubMed ID: 6300086
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Cation and sugar selectivity determinants in a novel family of transport proteins.
    Poolman B; Knol J; van der Does C; Henderson PJ; Liang WJ; Leblanc G; Pourcher T; Mus-Veteau I
    Mol Microbiol; 1996 Mar; 19(5):911-22. PubMed ID: 8830272
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Sequence alignment and homology threading reveals prokaryotic and eukaryotic proteins similar to lactose permease.
    Kasho VN; Smirnova IN; Kaback HR
    J Mol Biol; 2006 May; 358(4):1060-70. PubMed ID: 16574153
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Proton-linked L-fucose transport in Escherichia coli.
    Bradley SA; Tinsley CR; Muiry JA; Henderson PJ
    Biochem J; 1987 Dec; 248(2):495-500. PubMed ID: 2829831
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Inversion of receptor binding preferences by mutagenesis: free energy thermodynamic integration studies on sugar binding to L-arabinose binding proteins.
    Zacharias M; Straatsma TP; McCammon JA; Quiocho FA
    Biochemistry; 1993 Jul; 32(29):7428-34. PubMed ID: 8338840
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Structure and mechanism of the lactose permease of Escherichia coli.
    Abramson J; Smirnova I; Kasho V; Verner G; Kaback HR; Iwata S
    Science; 2003 Aug; 301(5633):610-5. PubMed ID: 12893935
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sequence and structure of a human glucose transporter.
    Mueckler M; Caruso C; Baldwin SA; Panico M; Blench I; Morris HR; Allard WJ; Lienhard GE; Lodish HF
    Science; 1985 Sep; 229(4717):941-5. PubMed ID: 3839598
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Identification and analysis of the putative pentose sugar efflux transporters in Escherichia coli.
    Koita K; Rao CV
    PLoS One; 2012; 7(8):e43700. PubMed ID: 22952739
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Transport of alpha-p-nitrophenylgalactoside by the lactose carrier of Escherichia coli.
    Putzrath RM; Wilson TH
    J Bacteriol; 1979 Feb; 137(2):1037-9. PubMed ID: 217863
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Functional architecture of MFS D-glucose transporters.
    Madej MG; Sun L; Yan N; Kaback HR
    Proc Natl Acad Sci U S A; 2014 Feb; 111(7):E719-27. PubMed ID: 24550316
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Defining topological features of membrane proteins by nanoelectrospray ionisation mass spectrometry.
    Jones LN; Baldwin SA; Henderson PJ; Ashcroft AE
    Rapid Commun Mass Spectrom; 2010 Feb; 24(3):276-84. PubMed ID: 20058234
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Structure, function and evolution of solute transporters in prokaryotes and eukaryotes.
    Hediger MA
    J Exp Biol; 1994 Nov; 196():15-49. PubMed ID: 7823018
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Datamining and functional environmental genomics reassess the phylogenetics and functional diversity of fungal monosaccharide transporters.
    Barbi F; Vallon L; Guerrero-Galán C; Zimmermann SD; Melayah D; Abrouk D; Doré J; Lemaire M; Fraissinet-Tachet L; Luis P; Marmeisse R
    Appl Microbiol Biotechnol; 2021 Jan; 105(2):647-660. PubMed ID: 33394157
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Crystal structure of a glucose/H+ symporter and its mechanism of action.
    Iancu CV; Zamoon J; Woo SB; Aleshin A; Choe JY
    Proc Natl Acad Sci U S A; 2013 Oct; 110(44):17862-7. PubMed ID: 24127585
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Location of the sugar-binding site of L-arabinose-binding protein. Sugar derivative syntheses, sugar binding specificity, and difference Fourier analyses.
    Newcomer ME; Miller DM; Quiocho FA
    J Biol Chem; 1979 Aug; 254(16):7529-33. PubMed ID: 381285
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.