BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 1970650)

  • 1. Mechanisms of sodium transport in bacteria.
    Dimroth P
    Philos Trans R Soc Lond B Biol Sci; 1990 Jan; 326(1236):465-77. PubMed ID: 1970650
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bacterial sodium ion-coupled energetics.
    Dimroth P
    Antonie Van Leeuwenhoek; 1994; 65(4):381-95. PubMed ID: 7832594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacterial energy transductions coupled to sodium ions.
    Dimroth P
    Res Microbiol; 1990; 141(3):332-6. PubMed ID: 2177912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of the oxaloacetate decarboxylase Na+ pump and its individual subunits in Escherichia coli and analysis of their function.
    Di Berardino M; Dimroth P
    Eur J Biochem; 1995 Aug; 231(3):790-801. PubMed ID: 7649179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Na(+)-coupled alternative to H(+)-coupled primary transport systems in bacteria.
    Dimroth P
    Bioessays; 1991 Sep; 13(9):463-8. PubMed ID: 1665692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The sodium ion translocating glutaconyl-CoA decarboxylase from Acidaminococcus fermentans: cloning and function of the genes forming a second operon.
    Braune A; Bendrat K; Rospert S; Buckel W
    Mol Microbiol; 1999 Jan; 31(2):473-87. PubMed ID: 10027965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sodium ion-translocating decarboxylases.
    Buckel W
    Biochim Biophys Acta; 2001 May; 1505(1):15-27. PubMed ID: 11248185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aspartate 203 of the oxaloacetate decarboxylase beta-subunit catalyses both the chemical and vectorial reaction of the Na+ pump.
    Di Berardino M; Dimroth P
    EMBO J; 1996 Apr; 15(8):1842-9. PubMed ID: 8617230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methylmalonyl-CoA decarboxylase from Propionigenium modestum--cloning and sequencing of the structural genes and purification of the enzyme complex.
    Bott M; Pfister K; Burda P; Kalbermatter O; Woehlke G; Dimroth P
    Eur J Biochem; 1997 Dec; 250(2):590-9. PubMed ID: 9428714
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupling mechanism of the oxaloacetate decarboxylase Na(+) pump.
    Dimroth P; Jockel P; Schmid M
    Biochim Biophys Acta; 2001 May; 1505(1):1-14. PubMed ID: 11248184
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of conserved residues within helices IV and VIII of the oxaloacetate decarboxylase beta subunit in the energy coupling mechanism of the Na+ pump.
    Schmid M; Vorburger T; Pos KM; Dimroth P
    Eur J Biochem; 2002 Jun; 269(12):2997-3004. PubMed ID: 12071964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the mechanism of sodium ion translocation by oxaloacetate decarboxylase of Klebsiella pneumoniae.
    Dimroth P; Thomer A
    Biochemistry; 1993 Feb; 32(7):1734-9. PubMed ID: 8382519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A primary respiratory Na+ pump of an anaerobic bacterium: the Na+-dependent NADH:quinone oxidoreductase of Klebsiella pneumoniae.
    Dimroth P; Thomer A
    Arch Microbiol; 1989; 151(5):439-44. PubMed ID: 2545175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Essential role of tyrosine 229 of the oxaloacetate decarboxylase beta-subunit in the energy coupling mechanism of the Na(+) pump.
    Jockel P; Schmid M; Choinowski T; Dimroth P
    Biochemistry; 2000 Apr; 39(15):4320-6. PubMed ID: 10757980
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of biotin and sodium in the decarboxylation of oxaloacetate by the membrane-bound oxaloacetate decarboxylase from Klebsiella aerogenes.
    Dimroth P
    Eur J Biochem; 1982 Jan; 121(2):435-41. PubMed ID: 7037395
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anaerobic citrate metabolism and its regulation in enterobacteria.
    Bott M
    Arch Microbiol; 1997; 167(2-3):78-88. PubMed ID: 9133329
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NqrM (DUF539) Protein Is Required for Maturation of Bacterial Na+-Translocating NADH:Quinone Oxidoreductase.
    Kostyrko VA; Bertsova YV; Serebryakova MV; Baykov AA; Bogachev AV
    J Bacteriol; 2015 Dec; 198(4):655-63. PubMed ID: 26644436
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sodium-transport NADH-quinone reductase of a marine Vibrio alginolyticus.
    Unemoto T; Hayashi M
    J Bioenerg Biomembr; 1989 Dec; 21(6):649-62. PubMed ID: 2687259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and function of the Na(+)-translocating ATPase of Propionigenium modestum.
    Dimroth P
    Acta Physiol Scand Suppl; 1992; 607():97-103. PubMed ID: 1449075
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A double mutation in subunit c of the Na(+)-specific F1F0-ATPase of Propionigenium modestum results in a switch from Na+ to H(+)-coupled ATP synthesis in the Escherichia coli host cells.
    Kaim G; Dimroth P
    J Mol Biol; 1995 Nov; 253(5):726-38. PubMed ID: 7473747
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.