These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 19706606)

  • 1. Lipid protein interactions couple protonation to conformation in a conserved cytosolic domain of G protein-coupled receptors.
    Madathil S; Fahmy K
    J Biol Chem; 2009 Oct; 284(42):28801-9. PubMed ID: 19706606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure and pH sensitivity of the transmembrane segment 3 of rhodopsin.
    Madathil S; Furlinski G; Fahmy K
    Biopolymers; 2006 Jul; 82(4):329-33. PubMed ID: 16453309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Molecular Switching Mechanism at the Conserved D(E)RY Motif in Class-A GPCRs.
    Sandoval A; Eichler S; Madathil S; Reeves PJ; Fahmy K; Böckmann RA
    Biophys J; 2016 Jul; 111(1):79-89. PubMed ID: 27410736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Linkage between the intramembrane H-bond network around aspartic acid 83 and the cytosolic environment of helix 8 in photoactivated rhodopsin.
    Lehmann N; Alexiev U; Fahmy K
    J Mol Biol; 2007 Mar; 366(4):1129-41. PubMed ID: 17196983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two protonation switches control rhodopsin activation in membranes.
    Mahalingam M; Martínez-Mayorga K; Brown MF; Vogel R
    Proc Natl Acad Sci U S A; 2008 Nov; 105(46):17795-800. PubMed ID: 18997017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of the conserved NPxxY(x)5,6F motif in the rhodopsin ground state and during activation.
    Fritze O; Filipek S; Kuksa V; Palczewski K; Hofmann KP; Ernst OP
    Proc Natl Acad Sci U S A; 2003 Mar; 100(5):2290-5. PubMed ID: 12601165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional role of the "ionic lock"--an interhelical hydrogen-bond network in family A heptahelical receptors.
    Vogel R; Mahalingam M; Lüdeke S; Huber T; Siebert F; Sakmar TP
    J Mol Biol; 2008 Jul; 380(4):648-55. PubMed ID: 18554610
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acid-base equilibria in rhodopsin: dependence of the protonation state of glu134 on its environment.
    Periole X; Ceruso MA; Mehler EL
    Biochemistry; 2004 Jun; 43(22):6858-64. PubMed ID: 15170322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A constitutively activating mutation alters the dynamics and energetics of a key conformational change in a ligand-free G protein-coupled receptor.
    Tsukamoto H; Farrens DL
    J Biol Chem; 2013 Sep; 288(39):28207-16. PubMed ID: 23940032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rhodopsin and 9-demethyl-retinal analog: effect of a partial agonist on displacement of transmembrane helix 6 in class A G protein-coupled receptors.
    Knierim B; Hofmann KP; Gärtner W; Hubbell WL; Ernst OP
    J Biol Chem; 2008 Feb; 283(8):4967-74. PubMed ID: 18063586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Agonist-induced conformational changes in bovine rhodopsin: insight into activation of G-protein-coupled receptors.
    Bhattacharya S; Hall SE; Vaidehi N
    J Mol Biol; 2008 Oct; 382(2):539-55. PubMed ID: 18638482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of the ligand-free G-protein-coupled receptor opsin.
    Park JH; Scheerer P; Hofmann KP; Choe HW; Ernst OP
    Nature; 2008 Jul; 454(7201):183-7. PubMed ID: 18563085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Helix packing moments reveal diversity and conservation in membrane protein structure.
    Liu W; Eilers M; Patel AB; Smith SO
    J Mol Biol; 2004 Mar; 337(3):713-29. PubMed ID: 15019789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The activation mechanism of chemokine receptor CCR5 involves common structural changes but a different network of interhelical interactions relative to rhodopsin.
    Springael JY; de Poorter C; Deupi X; Van Durme J; Pardo L; Parmentier M
    Cell Signal; 2007 Jul; 19(7):1446-56. PubMed ID: 17320349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of rhodopsin: implications for vision and beyond.
    Okada T; Palczewski K
    Curr Opin Struct Biol; 2001 Aug; 11(4):420-6. PubMed ID: 11495733
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hydrophobic interaction between the TM1 and H8 is essential for rhodopsin trafficking to vertebrate photoreceptor outer segments.
    Verma DK; Malhotra H; Woellert T; Calvert PD
    J Biol Chem; 2023 Dec; 299(12):105412. PubMed ID: 37918805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequence of late molecular events in the activation of rhodopsin.
    Knierim B; Hofmann KP; Ernst OP; Hubbell WL
    Proc Natl Acad Sci U S A; 2007 Dec; 104(51):20290-5. PubMed ID: 18077356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of squid rhodopsin with intracellularly extended cytoplasmic region.
    Shimamura T; Hiraki K; Takahashi N; Hori T; Ago H; Masuda K; Takio K; Ishiguro M; Miyano M
    J Biol Chem; 2008 Jun; 283(26):17753-6. PubMed ID: 18463093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A lipid pathway for ligand binding is necessary for a cannabinoid G protein-coupled receptor.
    Hurst DP; Grossfield A; Lynch DL; Feller S; Romo TD; Gawrisch K; Pitman MC; Reggio PH
    J Biol Chem; 2010 Jun; 285(23):17954-64. PubMed ID: 20220143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Signaling states of rhodopsin. Retinal provides a scaffold for activating proton transfer switches.
    Meyer CK; Bohme M; Ockenfels A; Gartner W; Hofmann KP; Ernst OP
    J Biol Chem; 2000 Jun; 275(26):19713-8. PubMed ID: 10770924
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.