BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 19706686)

  • 1. Nap1-mediated actin remodeling is essential for mammalian myoblast fusion.
    Nowak SJ; Nahirney PC; Hadjantonakis AK; Baylies MK
    J Cell Sci; 2009 Sep; 122(Pt 18):3282-93. PubMed ID: 19706686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering a multi-nucleated myotube, the role of the actin cytoskeleton.
    Peckham M
    J Microsc; 2008 Sep; 231(3):486-93. PubMed ID: 18755004
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Live imaging provides new insights on dynamic F-actin filopodia and differential endocytosis during myoblast fusion in Drosophila.
    Haralalka S; Shelton C; Cartwright HN; Guo F; Trimble R; Kumar RP; Abmayr SM
    PLoS One; 2014; 9(12):e114126. PubMed ID: 25474591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SCAR/WAVE and Arp2/3 are crucial for cytoskeletal remodeling at the site of myoblast fusion.
    Richardson BE; Beckett K; Nowak SJ; Baylies MK
    Development; 2007 Dec; 134(24):4357-67. PubMed ID: 18003739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Myogenesis defect due to Toca-1 knockdown can be suppressed by expression of N-WASP.
    George B; Jain N; Fen Chong P; Hou Tan J; Thanabalu T
    Biochim Biophys Acta; 2014 Sep; 1843(9):1930-41. PubMed ID: 24861867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Linker of nucleoskeleton and cytoskeleton (LINC) complex-mediated actin-dependent nuclear positioning orients centrosomes in migrating myoblasts.
    Chang W; Antoku S; Östlund C; Worman HJ; Gundersen GG
    Nucleus; 2015; 6(1):77-88. PubMed ID: 25587885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Myoblast structure affects subsequent skeletal myotube morphology and sarcomere assembly.
    Berendse M; Grounds MD; Lloyd CM
    Exp Cell Res; 2003 Dec; 291(2):435-50. PubMed ID: 14644165
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Creatine kinase B is necessary to limit myoblast fusion during myogenesis.
    Simionescu-Bankston A; Pichavant C; Canner JP; Apponi LH; Wang Y; Steeds C; Olthoff JT; Belanto JJ; Ervasti JM; Pavlath GK
    Am J Physiol Cell Physiol; 2015 Jun; 308(11):C919-31. PubMed ID: 25810257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Signaling mechanisms in mammalian myoblast fusion.
    Hindi SM; Tajrishi MM; Kumar A
    Sci Signal; 2013 Apr; 6(272):re2. PubMed ID: 23612709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PI(4,5)P2 regulates myoblast fusion through Arp2/3 regulator localization at the fusion site.
    Bothe I; Deng S; Baylies M
    Development; 2014 Jun; 141(11):2289-301. PubMed ID: 24821989
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RhoE controls myoblast alignment prior fusion through RhoA and ROCK.
    Fortier M; Comunale F; Kucharczak J; Blangy A; Charrasse S; Gauthier-Rouvière C
    Cell Death Differ; 2008 Aug; 15(8):1221-31. PubMed ID: 18369372
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of Aberrant Myotubes by Myoblasts Lacking Myosin VI Is Associated with Alterations in the Cytoskeleton Organization, Myoblast Adhesion and Fusion.
    Lehka L; Topolewska M; Wojton D; Karatsai O; Alvarez-Suarez P; Pomorski P; Rędowicz MJ
    Cells; 2020 Jul; 9(7):. PubMed ID: 32664530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphological changes and spatial regulation of diacylglycerol kinase-zeta, syntrophins, and Rac1 during myoblast fusion.
    Abramovici H; Gee SH
    Cell Motil Cytoskeleton; 2007 Jul; 64(7):549-67. PubMed ID: 17410543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Versican processing by a disintegrin-like and metalloproteinase domain with thrombospondin-1 repeats proteinases-5 and -15 facilitates myoblast fusion.
    Stupka N; Kintakas C; White JD; Fraser FW; Hanciu M; Aramaki-Hattori N; Martin S; Coles C; Collier F; Ward AC; Apte SS; McCulloch DR
    J Biol Chem; 2013 Jan; 288(3):1907-17. PubMed ID: 23233679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An invasive podosome-like structure promotes fusion pore formation during myoblast fusion.
    Sens KL; Zhang S; Jin P; Duan R; Zhang G; Luo F; Parachini L; Chen EH
    J Cell Biol; 2010 Nov; 191(5):1013-27. PubMed ID: 21098115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Palmdelphin promotes myoblast differentiation and muscle regeneration.
    Nie Y; Chen H; Guo C; Yuan Z; Zhou X; Zhang Y; Zhang X; Mo D; Chen Y
    Sci Rep; 2017 Feb; 7():41608. PubMed ID: 28148961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphocreatine as an energy source for actin cytoskeletal rearrangements during myoblast fusion.
    O'Connor RS; Steeds CM; Wiseman RW; Pavlath GK
    J Physiol; 2008 Jun; 586(12):2841-53. PubMed ID: 18420707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Myomaker is a membrane activator of myoblast fusion and muscle formation.
    Millay DP; O'Rourke JR; Sutherland LB; Bezprozvannaya S; Shelton JM; Bassel-Duby R; Olson EN
    Nature; 2013 Jul; 499(7458):301-5. PubMed ID: 23868259
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A critical function for the actin cytoskeleton in targeted exocytosis of prefusion vesicles during myoblast fusion.
    Kim S; Shilagardi K; Zhang S; Hong SN; Sens KL; Bo J; Gonzalez GA; Chen EH
    Dev Cell; 2007 Apr; 12(4):571-86. PubMed ID: 17419995
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Asymmetric Mbc, active Rac1 and F-actin foci in the fusion-competent myoblasts during myoblast fusion in Drosophila.
    Haralalka S; Shelton C; Cartwright HN; Katzfey E; Janzen E; Abmayr SM
    Development; 2011 Apr; 138(8):1551-62. PubMed ID: 21389053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.