BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 19706686)

  • 41. Role and organization of the actin cytoskeleton during cell-cell fusion.
    Martin SG
    Semin Cell Dev Biol; 2016 Dec; 60():121-126. PubMed ID: 27476112
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Myoblast migration is regulated by calpain through its involvement in cell attachment and cytoskeletal organization.
    Dedieu S; Poussard S; Mazères G; Grise F; Dargelos E; Cottin P; Brustis JJ
    Exp Cell Res; 2004 Jan; 292(1):187-200. PubMed ID: 14720518
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Molecular control of mammalian myoblast fusion.
    Jansen KM; Pavlath GK
    Methods Mol Biol; 2008; 475():115-33. PubMed ID: 18979241
    [TBL] [Abstract][Full Text] [Related]  

  • 44. ADP-ribosylation factor 6 regulates mammalian myoblast fusion through phospholipase D1 and phosphatidylinositol 4,5-bisphosphate signaling pathways.
    Bach AS; Enjalbert S; Comunale F; Bodin S; Vitale N; Charrasse S; Gauthier-Rouvière C
    Mol Biol Cell; 2010 Jul; 21(14):2412-24. PubMed ID: 20505075
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Focal adhesion kinase signaling regulates the expression of caveolin 3 and beta1 integrin, genes essential for normal myoblast fusion.
    Quach NL; Biressi S; Reichardt LF; Keller C; Rando TA
    Mol Biol Cell; 2009 Jul; 20(14):3422-35. PubMed ID: 19458188
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Phosphatidylserine receptor BAI1 and apoptotic cells as new promoters of myoblast fusion.
    Hochreiter-Hufford AE; Lee CS; Kinchen JM; Sokolowski JD; Arandjelovic S; Call JA; Klibanov AL; Yan Z; Mandell JW; Ravichandran KS
    Nature; 2013 May; 497(7448):263-7. PubMed ID: 23615608
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mannose receptor regulates myoblast motility and muscle growth.
    Jansen KM; Pavlath GK
    J Cell Biol; 2006 Jul; 174(3):403-13. PubMed ID: 16864654
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Involvement of unconventional myosin VI in myoblast function and myotube formation.
    Karolczak J; Pavlyk I; Majewski Ł; Sobczak M; Niewiadomski P; Rzhepetskyy Y; Sikorska A; Nowak N; Pomorski P; Prószyński T; Ehler E; Rędowicz MJ
    Histochem Cell Biol; 2015 Jul; 144(1):21-38. PubMed ID: 25896210
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Genetic Mutations in jamb, jamc, and myomaker Revealed Different Roles on Myoblast Fusion and Muscle Growth.
    Si Y; Wen H; Du S
    Mar Biotechnol (NY); 2019 Feb; 21(1):111-123. PubMed ID: 30467785
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The actin nucleator WASp is required for myoblast fusion during adult Drosophila myogenesis.
    Mukherjee P; Gildor B; Shilo BZ; VijayRaghavan K; Schejter ED
    Development; 2011 Jun; 138(11):2347-57. PubMed ID: 21558381
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Syndecan-4 affects myogenesis via Rac1-mediated actin remodeling and exhibits copy-number amplification and increased expression in human rhabdomyosarcoma tumors.
    Szabo K; Varga D; Vegh AG; Liu N; Xiao X; Xu L; Dux L; Erdelyi M; Rovo L; Keller-Pinter A
    Cell Mol Life Sci; 2022 Feb; 79(2):122. PubMed ID: 35128576
    [TBL] [Abstract][Full Text] [Related]  

  • 52. CKIP-1 regulates mammalian and zebrafish myoblast fusion.
    Baas D; Caussanel-Boude S; Guiraud A; Calhabeu F; Delaune E; Pilot F; Chopin E; Machuca-Gayet I; Vernay A; Bertrand S; Rual JF; Jurdic P; Hill DE; Vidal M; Schaeffer L; Goillot E
    J Cell Sci; 2012 Aug; 125(Pt 16):3790-800. PubMed ID: 22553210
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Visualizing new dimensions in Drosophila myoblast fusion.
    Richardson B; Beckett K; Baylies M
    Bioessays; 2008 May; 30(5):423-31. PubMed ID: 18404690
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cytoskeleton/stretch-activated ion channel interaction regulates myogenic differentiation of skeletal myoblasts.
    Formigli L; Meacci E; Sassoli C; Squecco R; Nosi D; Chellini F; Naro F; Francini F; Zecchi-Orlandini S
    J Cell Physiol; 2007 May; 211(2):296-306. PubMed ID: 17295211
    [TBL] [Abstract][Full Text] [Related]  

  • 55. NADPH Oxidase 4 Contributes to Myoblast Fusion and Skeletal Muscle Regeneration.
    Youm TH; Woo SH; Kwon ES; Park SS
    Oxid Med Cell Longev; 2019; 2019():3585390. PubMed ID: 31827673
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Myogenic differentiation depends on the interplay of Grb2 and N-WASP.
    Mitra P; Thanabalu T
    Biochim Biophys Acta Mol Cell Res; 2017 Mar; 1864(3):487-497. PubMed ID: 27965114
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Tracing myoblast fusion in Drosophila embryos by fluorescent actin probes.
    Haralalka S; Abmayr SM
    Methods Mol Biol; 2015; 1313():149-64. PubMed ID: 25947663
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Tks5 and Dynamin-2 enhance actin bundle rigidity in invadosomes to promote myoblast fusion.
    Chuang MC; Lin SS; Ohniwa RL; Lee GH; Su YA; Chang YC; Tang MJ; Liu YW
    J Cell Biol; 2019 May; 218(5):1670-1685. PubMed ID: 30894403
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Control of muscle formation by the fusogenic micropeptide myomixer.
    Bi P; Ramirez-Martinez A; Li H; Cannavino J; McAnally JR; Shelton JM; Sánchez-Ortiz E; Bassel-Duby R; Olson EN
    Science; 2017 Apr; 356(6335):323-327. PubMed ID: 28386024
    [TBL] [Abstract][Full Text] [Related]  

  • 60. WIP/WASp-based actin-polymerization machinery is essential for myoblast fusion in Drosophila.
    Massarwa R; Carmon S; Shilo BZ; Schejter ED
    Dev Cell; 2007 Apr; 12(4):557-69. PubMed ID: 17419994
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.