BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

458 related articles for article (PubMed ID: 19706958)

  • 1. Process synthesis and optimization for the production of carbon nanostructures.
    Iyuke SE; Mamvura TA; Liu K; Sibanda V; Meyyappan M; Varadan VK
    Nanotechnology; 2009 Sep; 20(37):375602. PubMed ID: 19706958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New technique of synthesizing single-walled carbon nanotubes from ethanol using fluidized-bed over Fe-Mo/MgO catalyst.
    Liu Q; Fang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2006 May; 64(2):296-300. PubMed ID: 16530002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large-area synthesis of carbon nanofibres at room temperature.
    Boskovic BO; Stolojan V; Khan RU; Haq S; Silva SR
    Nat Mater; 2002 Nov; 1(3):165-8. PubMed ID: 12618804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal decomposition of ferrocene as a method for production of single-walled carbon nanotubes without additional carbon sources.
    Barreiro A; Hampel S; Rümmeli MH; Kramberger C; Grüneis A; Biedermann K; Leonhardt A; Gemming T; Büchner B; Bachtold A; Pichler T
    J Phys Chem B; 2006 Oct; 110(42):20973-7. PubMed ID: 17048915
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth of multi-walled carbon nanotubes by nebulized spray pyrolysis of a natural precursor: alpha-pinene.
    Lara-Romero J; Alonso-Núñez G; Jiménez-Sandoval S; Avalos-Borja M
    J Nanosci Nanotechnol; 2008 Dec; 8(12):6509-12. PubMed ID: 19205231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of multiwalled carbon nanotubes on fly ash derived catalysts.
    Dunens OM; MacKenzie KJ; Harris AT
    Environ Sci Technol; 2009 Oct; 43(20):7889-94. PubMed ID: 19921910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of carbon nanotubes by swirled floating catalyst chemical vapour deposition method.
    Abdulkareem AS; Afolabi AS; Iyuke SE; Vz Pienaar HC
    J Nanosci Nanotechnol; 2007 Sep; 7(9):3233-8. PubMed ID: 18019155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A temperature window for the synthesis of single-walled carbon nanotubes by catalytic chemical vapor deposition of CH4 over Mo-Fe/MgO catalyst.
    Ouyang Y; Chen L; Liu QX; Fang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2008 Nov; 71(2):317-20. PubMed ID: 18249582
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CVD growth of N-doped carbon nanotubes on silicon substrates and its mechanism.
    He M; Zhou S; Zhang J; Liu Z; Robinson C
    J Phys Chem B; 2005 May; 109(19):9275-9. PubMed ID: 16852108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of hole opening in single-wall carbon nanotubes and single-wall carbon nanohorns using oxygen.
    Fan J; Yudasaka M; Miyawaki J; Ajima K; Murata K; Iijima S
    J Phys Chem B; 2006 Feb; 110(4):1587-91. PubMed ID: 16471720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A technique of purification process of single-walled carbon nanotubes with air.
    Song X; Fang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Jul; 67(3-4):1131-4. PubMed ID: 17097339
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A sonochemical route to single-walled carbon nanotubes under ambient conditions.
    Jeong SH; Ko JH; Park JB; Park W
    J Am Chem Soc; 2004 Dec; 126(49):15982-3. PubMed ID: 15584730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iron-doped carbon aerogels: novel porous substrates for direct growth of carbon nanotubes.
    Steiner SA; Baumann TF; Kong J; Satcher JH; Dresselhaus MS
    Langmuir; 2007 Apr; 23(9):5161-6. PubMed ID: 17381146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Raman studies of hydrogen adsorbed on nanostructured porous materials.
    Panella B; Hirscher M
    Phys Chem Chem Phys; 2008 May; 10(20):2910-7. PubMed ID: 18473039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrating single-wall carbon nanotubes into donor-acceptor nanohybrids.
    Guldi DM; Rahman GM; Jux N; Tagmatarchis N; Prato M
    Angew Chem Int Ed Engl; 2004 Oct; 43(41):5526-30. PubMed ID: 15484237
    [No Abstract]   [Full Text] [Related]  

  • 16. Single step synthesis of graphene nanoribbons by catalyst particle size dependent cutting of multiwalled carbon nanotubes.
    Parashar UK; Bhandari S; Srivastava RK; Jariwala D; Srivastava A
    Nanoscale; 2011 Sep; 3(9):3876-82. PubMed ID: 21842103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Covalent immobilization of redox enzyme on electrospun nonwoven poly(acrylonitrile-co-acrylic acid) nanofiber mesh filled with carbon nanotubes: a comprehensive study.
    Wang ZG; Ke BB; Xu ZK
    Biotechnol Bioeng; 2007 Jul; 97(4):708-20. PubMed ID: 17171660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In situ observation of the growth mechanisms of carbon nanotubes under diverse reaction conditions.
    Sharma R; Rez P; Treacy MM; Stuart SJ
    J Electron Microsc (Tokyo); 2005 Jun; 54(3):231-7. PubMed ID: 16123070
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The use of NH3 to promote the production of large-diameter single-walled carbon nanotubes with a narrow (n,m) distribution.
    Zhu Z; Jiang H; Susi T; Nasibulin AG; Kauppinen EI
    J Am Chem Soc; 2011 Feb; 133(5):1224-7. PubMed ID: 21192679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reactions under autogenic pressure at elevated temperature (RAPET) of various alkoxides: formation of metals/metal oxides-carbon core-shell structures.
    Pol SV; Pol VG; Gedanken A
    Chemistry; 2004 Sep; 10(18):4467-73. PubMed ID: 15378624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.