These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 19707672)
1. The Baeyer-Villiger reaction: solvent effects on reaction mechanisms. Mora-Diez N; Keller S; Alvarez-Idaboy JR Org Biomol Chem; 2009 Sep; 7(18):3682-90. PubMed ID: 19707672 [TBL] [Abstract][Full Text] [Related]
2. The mechanism of the Baeyer-Villiger rearrangement: quantum chemistry and TST study supported by experimental kinetic data. Alvarez-Idaboy JR; Reyes L; Mora-Diez N Org Biomol Chem; 2007 Nov; 5(22):3682-9. PubMed ID: 17971998 [TBL] [Abstract][Full Text] [Related]
3. Mechanistic investigation of chiral phosphoric acid catalyzed asymmetric Baeyer-Villiger reaction of 3-substituted cyclobutanones with H2O2 as the oxidant. Xu S; Wang Z; Li Y; Zhang X; Wang H; Ding K Chemistry; 2010 Mar; 16(10):3021-35. PubMed ID: 20108279 [TBL] [Abstract][Full Text] [Related]
4. Uncatalyzed transfer hydrogenation of quinones and related systems: a theoretical mechanistic study. Chan B; Radom L J Phys Chem A; 2007 Jul; 111(28):6456-67. PubMed ID: 17585851 [TBL] [Abstract][Full Text] [Related]
5. Theoretical and experimental studies on the Baeyer-Villiger oxidation of ketones and the effect of alpha-halo substituents. Grein F; Chen AC; Edwards D; Crudden CM J Org Chem; 2006 Feb; 71(3):861-72. PubMed ID: 16438495 [TBL] [Abstract][Full Text] [Related]
6. Theoretical and experimental studies on selective oxidation of aromatic ketone by performic acid. Liu B; Meng XG; Li WY; Zhou LC; Hu CW J Phys Chem A; 2012 Mar; 116(11):2920-6. PubMed ID: 22356462 [TBL] [Abstract][Full Text] [Related]
7. Effects of alkyl groups in the rate determining step of the Baeyer-Villiger reaction of phenyl alkyl ketones: a quantum chemistry study. Reyes L; Díaz-Sánchez C; Iuga C J Phys Chem A; 2012 Jul; 116(29):7712-7. PubMed ID: 22738150 [TBL] [Abstract][Full Text] [Related]
8. Theoretical study of the [2+3] cycloaddition of nitrones to nitriles-influence of nitrile substituent, solvent and Lewis acid coordination. Wagner G Chemistry; 2003 Apr; 9(7):1503-10. PubMed ID: 12658647 [TBL] [Abstract][Full Text] [Related]
9. New insights on the nature of the chemical species involved during the process of dopamine deprotonation in aqueous solution: theoretical and experimental study. Corona-Avendaño S; Alarcón-Angeles G; Rosquete-Pina GA; Rojas-Hernández A; Gutierrez A; Ramírez-Silva MT; Romero-Romo M; Palomar-Pardavé M J Phys Chem B; 2007 Feb; 111(7):1640-7. PubMed ID: 17256978 [TBL] [Abstract][Full Text] [Related]
10. Theoretical investigation of the mechanism of the baeyer-villiger reaction in nonpolar solvents. Okuno Y Chemistry; 1997 Feb; 3(2):212-8. PubMed ID: 24022950 [TBL] [Abstract][Full Text] [Related]
11. Designing an appropriate computational model for DNA nucleoside hydrolysis: a case study of 2'-deoxyuridine. Przybylski JL; Wetmore SD J Phys Chem B; 2009 May; 113(18):6533-42. PubMed ID: 19358541 [TBL] [Abstract][Full Text] [Related]
12. The role of acid catalysis in the Baeyer-Villiger reaction. A theoretical study. Bach RD J Org Chem; 2012 Aug; 77(16):6801-15. PubMed ID: 22849715 [TBL] [Abstract][Full Text] [Related]
13. Theoretical study of the vinyl allene oxide to cyclopent-2-en-1-one rearrangement: mechanism, torquoselectivity and solvent effects. Silva López C; Nieto Faza O; York DM; de Lera AR J Org Chem; 2004 May; 69(11):3635-44. PubMed ID: 15152991 [TBL] [Abstract][Full Text] [Related]
14. Reinvestigating the role of multiple hydrogen transfers in Baeyer-Villiger reactions. Alvarez-Idaboy JR; Reyes L J Org Chem; 2007 Aug; 72(17):6580-3. PubMed ID: 17655256 [TBL] [Abstract][Full Text] [Related]
15. Ion-pairing of octyl viologen diiodide in low-polar solvents: an experimental and computational study. Saielli G J Phys Chem A; 2008 Sep; 112(35):7987-95. PubMed ID: 18698744 [TBL] [Abstract][Full Text] [Related]
16. An old reaction in new media: kinetic study of a platinum(II) substitution reaction in ionic liquids. Correia I; Welton T Dalton Trans; 2009 Jun; (21):4115-21. PubMed ID: 19452059 [TBL] [Abstract][Full Text] [Related]
17. Acid-catalyzed nucleophilic additions to carbonyl groups: is the accepted mechanism the rule or an exception? Reyes L; Nicolás-Vázquez I; Mora-Diez N; Alvarez-Idaboy JR J Org Chem; 2013 Mar; 78(6):2327-35. PubMed ID: 23419137 [TBL] [Abstract][Full Text] [Related]
18. Hydrothermal reactions of formaldehyde and formic acid: free-energy analysis of equilibrium. Matubayasi N; Nakahara M J Chem Phys; 2005 Feb; 122(7):074509. PubMed ID: 15743256 [TBL] [Abstract][Full Text] [Related]
19. Theoretical study on the hypervalent λ3-bromane strategy for Baeyer-Villiger oxidation of benzaldehyde and acetaldehyde: rearrangement mechanism. Fu H; Xie S; Fu A; Lin X; Zhao H; Ye T Org Biomol Chem; 2012 Aug; 10(31):6333-40. PubMed ID: 22735260 [TBL] [Abstract][Full Text] [Related]
20. A novel liquid-phase strategy for organic synthesis using organic ions as soluble supports. Huo C; Chan TH Chem Soc Rev; 2010 Aug; 39(8):2977-3006. PubMed ID: 20480066 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]