These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 19707707)

  • 1. Simulating spatial pattern and dynamics of military training impacts for allocation of land repair using images.
    Wang G; Gertner G; Anderson A; Howard H
    Environ Manage; 2009 Oct; 44(4):810-23. PubMed ID: 19707707
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial and temporal assessment of cumulative disturbance impacts due to military training, burning, haying, and their interactions on land condition of Fort Riley.
    Wang G; Murphy D; Oller A; Howard HR; Anderson AB; Rijal S; Myers NR; Woodford P
    Environ Manage; 2014 Jul; 54(1):51-66. PubMed ID: 24817335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monitoring vegetation change and dynamics on U.S. Army training lands using satellite image time series analysis.
    Hutchinson JMS; Jacquin A; Hutchinson SL; Verbesselt J
    J Environ Manage; 2015 Mar; 150():355-366. PubMed ID: 25441663
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A dynamic simulation/optimization model for scheduling restoration of degraded military training lands.
    Önal H; Woodford P; Tweddale SA; Westervelt JD; Chen M; Dissanayake STM; Pitois G
    J Environ Manage; 2016 Apr; 171():144-157. PubMed ID: 26895721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmental condition assessment of US military installations using GIS based spatial multi-criteria decision analysis.
    Singer S; Wang G; Howard H; Anderson A
    Environ Manage; 2012 Aug; 50(2):329-40. PubMed ID: 22684636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping and dynamic monitoring of military training-induced vegetation cover loss using Sentinel-2 images and method comparison.
    Xu X; Ban B; Howard HR; Chen S; Wang G
    Environ Monit Assess; 2023 Jan; 195(2):320. PubMed ID: 36689091
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Managing military training-related environmental disturbance.
    Zentelis R; Banks S; Roberts JD; Dovers S; Lindenmayer D
    J Environ Manage; 2017 Dec; 204(Pt 1):486-493. PubMed ID: 28930693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing spatial uncertainties of land allocation using a scenario approach and sensitivity analysis: a study for land use in Europe.
    Verburg PH; Tabeau A; Hatna E
    J Environ Manage; 2013 Sep; 127 Suppl():S132-44. PubMed ID: 23026356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.
    Paciorek CJ; Liu Y;
    Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comprehensive approach to identifying monitoring priorities of small landbirds on military installations.
    Althoff DP; Rivers JW; Pontius JS; Gipson PS; Woodford PB
    Environ Manage; 2004 Dec; 34(6):887-902. PubMed ID: 15696298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Federal land management, carbon sequestration, and climate change in the Southeastern U.S.: a case study with Fort Benning.
    Zhao S; Liu S; Li Z; Sohl TL
    Environ Sci Technol; 2010 Feb; 44(3):992-7. PubMed ID: 20055486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiscale land use impacts on water quality: Assessment, planning, and future perspectives in Brazil.
    Mello K; Taniwaki RH; Paula FR; Valente RA; Randhir TO; Macedo DR; Leal CG; Rodrigues CB; Hughes RM
    J Environ Manage; 2020 Sep; 270():110879. PubMed ID: 32721318
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantifying the impacts of the human activities on the evolution of Po delta territory during the last 120 years.
    Corbau C; Zambello E; Rodella I; Utizi K; Nardin W; Simeoni U
    J Environ Manage; 2019 Feb; 232():702-712. PubMed ID: 30529412
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ecosystem Service Values Changes in Response to Land-Use/Land-Cover Dynamics in Dry Afromontane Forest in Northern Ethiopia.
    Solomon N; Segnon AC; Birhane E
    Int J Environ Res Public Health; 2019 Nov; 16(23):. PubMed ID: 31766672
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessing effects of land use on landscape connectivity: loss and fragmentation of western U.S. forests.
    Theobald DM; Crooks KR; Norman JB
    Ecol Appl; 2011 Oct; 21(7):2445-58. PubMed ID: 22073634
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatio-temporal evolution of agricultural land use change drivers: A case study from Chalous region, Iran.
    Alijani Z; Hosseinali F; Biswas A
    J Environ Manage; 2020 May; 262():110326. PubMed ID: 32250807
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The managed clearing: An overlooked land-cover type in urbanizing regions?
    Singh KK; Madden M; Gray J; Meentemeyer RK
    PLoS One; 2018; 13(2):e0192822. PubMed ID: 29432442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial and temporal dynamics of land use pattern in Eastern Turkey: a case study in Gümüşhane.
    Kadioğullari AI; Başkent EZ
    Environ Monit Assess; 2008 Mar; 138(1-3):289-303. PubMed ID: 17562198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterizing, monitoring, and simulating land cover dynamics using GlobeLand30: A case study from 2000 to 2030.
    Jokar Arsanjani J
    J Environ Manage; 2018 May; 214():66-75. PubMed ID: 29518597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis and simulation of land cover changes and their impacts on land surface temperature in a lower Himalayan region.
    Ullah S; Ahmad K; Sajjad RU; Abbasi AM; Nazeer A; Tahir AA
    J Environ Manage; 2019 Sep; 245():348-357. PubMed ID: 31158687
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.