BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 19708025)

  • 1. Changing phosphoinositides "on the fly": how trafficking vesicles avoid an identity crisis.
    Botelho RJ
    Bioessays; 2009 Oct; 31(10):1127-36. PubMed ID: 19708025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of lipid kinase PIKfyve reveals a role for phosphatase Inpp4b in the regulation of PI(3)P-mediated lysosome dynamics through VPS34 activity.
    Saffi GT; Wang CA; Mangialardi EM; Vacher J; Botelho RJ; Salmena L
    J Biol Chem; 2022 Aug; 298(8):102187. PubMed ID: 35760104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Phosphoinositides: lipidic essential actors in the intracellular traffic].
    Bertazzi DL; De Craene JO; Bär S; Sanjuan-Vazquez M; Raess MA; Friant S
    Biol Aujourdhui; 2015; 209(1):97-109. PubMed ID: 26115715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequential conversion of PtdIns3P to PtdIns(3,5)P
    Rodgers SJ; Jones EI; Mitchell CA; McGrath MJ
    Autophagy; 2023 Apr; 19(4):1365-1367. PubMed ID: 36103410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A phosphoinositide conversion mechanism for exit from endosomes.
    Ketel K; Krauss M; Nicot AS; Puchkov D; Wieffer M; Müller R; Subramanian D; Schultz C; Laporte J; Haucke V
    Nature; 2016 Jan; 529(7586):408-12. PubMed ID: 26760201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Core protein machinery for mammalian phosphatidylinositol 3,5-bisphosphate synthesis and turnover that regulates the progression of endosomal transport. Novel Sac phosphatase joins the ArPIKfyve-PIKfyve complex.
    Sbrissa D; Ikonomov OC; Fu Z; Ijuin T; Gruenberg J; Takenawa T; Shisheva A
    J Biol Chem; 2007 Aug; 282(33):23878-91. PubMed ID: 17556371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of myotubularin by an adenoviral vector demonstrates its function as a phosphatidylinositol 3-phosphate [PtdIns(3)P] phosphatase in muscle cell lines: involvement of PtdIns(3)P in insulin-stimulated glucose transport.
    Chaussade C; Pirola L; Bonnafous S; Blondeau F; Brenz-Verca S; Tronchère H; Portis F; Rusconi S; Payrastre B; Laporte J; Van Obberghen E
    Mol Endocrinol; 2003 Dec; 17(12):2448-60. PubMed ID: 14500759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of Pik1p and Sjl proteins in membrane trafficking.
    Nguyen PH; Hasek J; Kohlwein SD; Romero C; Choi JH; Vancura A
    FEMS Yeast Res; 2005 Feb; 5(4-5):363-71. PubMed ID: 15691741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of sphingolipid metabolism by the phosphatidylinositol-4-phosphate phosphatase Sac1p through regulation of phosphatidylinositol in Saccharomyces cerevisiae.
    Brice SE; Alford CW; Cowart LA
    J Biol Chem; 2009 Mar; 284(12):7588-96. PubMed ID: 19139096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of anionic lipids on SHIP2 phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase activity.
    Vandeput F; Backers K; Villeret V; Pesesse X; Erneux C
    Cell Signal; 2006 Dec; 18(12):2193-9. PubMed ID: 16824732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sac1, a lipid phosphatase at the interface of vesicular and nonvesicular transport.
    Del Bel LM; Brill JA
    Traffic; 2018 May; 19(5):301-318. PubMed ID: 29411923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of phosphoinositide-binding domains for the detection and quantification of specific phosphoinositides.
    Furutani M; Tsujita K; Itoh T; Ijuin T; Takenawa T
    Anal Biochem; 2006 Aug; 355(1):8-18. PubMed ID: 16814242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphoinositide synthesis and degradation in isolated rat liver peroxisomes.
    Jeynov B; Lay D; Schmidt F; Tahirovic S; Just WW
    FEBS Lett; 2006 Oct; 580(25):5917-24. PubMed ID: 17045591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphatidylinositol-3,5-bisphosphate: no longer the poor PIP2.
    Ho CY; Alghamdi TA; Botelho RJ
    Traffic; 2012 Jan; 13(1):1-8. PubMed ID: 21736686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of the phosphoinositides at the Golgi complex.
    De Matteis MA; Di Campli A; Godi A
    Biochim Biophys Acta; 2005 Jul; 1744(3):396-405. PubMed ID: 15979509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphoinositide Diversity, Distribution, and Effector Function: Stepping Out of the Box.
    Choy CH; Han BK; Botelho RJ
    Bioessays; 2017 Dec; 39(12):. PubMed ID: 28977683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphoinositides in plants: novel functions in membrane trafficking.
    Thole JM; Nielsen E
    Curr Opin Plant Biol; 2008 Dec; 11(6):620-31. PubMed ID: 19028349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atg18 regulates organelle morphology and Fab1 kinase activity independent of its membrane recruitment by phosphatidylinositol 3,5-bisphosphate.
    Efe JA; Botelho RJ; Emr SD
    Mol Biol Cell; 2007 Nov; 18(11):4232-44. PubMed ID: 17699591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphatidylinositol 4-kinases: old enzymes with emerging functions.
    Balla A; Balla T
    Trends Cell Biol; 2006 Jul; 16(7):351-61. PubMed ID: 16793271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new pathway for synthesis of phosphatidylinositol-4,5-bisphosphate.
    Rameh LE; Tolias KF; Duckworth BC; Cantley LC
    Nature; 1997 Nov; 390(6656):192-6. PubMed ID: 9367159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.