These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 19708025)

  • 1. Changing phosphoinositides "on the fly": how trafficking vesicles avoid an identity crisis.
    Botelho RJ
    Bioessays; 2009 Oct; 31(10):1127-36. PubMed ID: 19708025
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of lipid kinase PIKfyve reveals a role for phosphatase Inpp4b in the regulation of PI(3)P-mediated lysosome dynamics through VPS34 activity.
    Saffi GT; Wang CA; Mangialardi EM; Vacher J; Botelho RJ; Salmena L
    J Biol Chem; 2022 Aug; 298(8):102187. PubMed ID: 35760104
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Phosphoinositides: lipidic essential actors in the intracellular traffic].
    Bertazzi DL; De Craene JO; Bär S; Sanjuan-Vazquez M; Raess MA; Friant S
    Biol Aujourdhui; 2015; 209(1):97-109. PubMed ID: 26115715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequential conversion of PtdIns3P to PtdIns(3,5)P
    Rodgers SJ; Jones EI; Mitchell CA; McGrath MJ
    Autophagy; 2023 Apr; 19(4):1365-1367. PubMed ID: 36103410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A phosphoinositide conversion mechanism for exit from endosomes.
    Ketel K; Krauss M; Nicot AS; Puchkov D; Wieffer M; Müller R; Subramanian D; Schultz C; Laporte J; Haucke V
    Nature; 2016 Jan; 529(7586):408-12. PubMed ID: 26760201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Core protein machinery for mammalian phosphatidylinositol 3,5-bisphosphate synthesis and turnover that regulates the progression of endosomal transport. Novel Sac phosphatase joins the ArPIKfyve-PIKfyve complex.
    Sbrissa D; Ikonomov OC; Fu Z; Ijuin T; Gruenberg J; Takenawa T; Shisheva A
    J Biol Chem; 2007 Aug; 282(33):23878-91. PubMed ID: 17556371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expression of myotubularin by an adenoviral vector demonstrates its function as a phosphatidylinositol 3-phosphate [PtdIns(3)P] phosphatase in muscle cell lines: involvement of PtdIns(3)P in insulin-stimulated glucose transport.
    Chaussade C; Pirola L; Bonnafous S; Blondeau F; Brenz-Verca S; Tronchère H; Portis F; Rusconi S; Payrastre B; Laporte J; Van Obberghen E
    Mol Endocrinol; 2003 Dec; 17(12):2448-60. PubMed ID: 14500759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of Pik1p and Sjl proteins in membrane trafficking.
    Nguyen PH; Hasek J; Kohlwein SD; Romero C; Choi JH; Vancura A
    FEMS Yeast Res; 2005 Feb; 5(4-5):363-71. PubMed ID: 15691741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of sphingolipid metabolism by the phosphatidylinositol-4-phosphate phosphatase Sac1p through regulation of phosphatidylinositol in Saccharomyces cerevisiae.
    Brice SE; Alford CW; Cowart LA
    J Biol Chem; 2009 Mar; 284(12):7588-96. PubMed ID: 19139096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The influence of anionic lipids on SHIP2 phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase activity.
    Vandeput F; Backers K; Villeret V; Pesesse X; Erneux C
    Cell Signal; 2006 Dec; 18(12):2193-9. PubMed ID: 16824732
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sac1, a lipid phosphatase at the interface of vesicular and nonvesicular transport.
    Del Bel LM; Brill JA
    Traffic; 2018 May; 19(5):301-318. PubMed ID: 29411923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of phosphoinositide-binding domains for the detection and quantification of specific phosphoinositides.
    Furutani M; Tsujita K; Itoh T; Ijuin T; Takenawa T
    Anal Biochem; 2006 Aug; 355(1):8-18. PubMed ID: 16814242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphoinositide synthesis and degradation in isolated rat liver peroxisomes.
    Jeynov B; Lay D; Schmidt F; Tahirovic S; Just WW
    FEBS Lett; 2006 Oct; 580(25):5917-24. PubMed ID: 17045591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphatidylinositol-3,5-bisphosphate: no longer the poor PIP2.
    Ho CY; Alghamdi TA; Botelho RJ
    Traffic; 2012 Jan; 13(1):1-8. PubMed ID: 21736686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of the phosphoinositides at the Golgi complex.
    De Matteis MA; Di Campli A; Godi A
    Biochim Biophys Acta; 2005 Jul; 1744(3):396-405. PubMed ID: 15979509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphoinositide Diversity, Distribution, and Effector Function: Stepping Out of the Box.
    Choy CH; Han BK; Botelho RJ
    Bioessays; 2017 Dec; 39(12):. PubMed ID: 28977683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphoinositides in plants: novel functions in membrane trafficking.
    Thole JM; Nielsen E
    Curr Opin Plant Biol; 2008 Dec; 11(6):620-31. PubMed ID: 19028349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atg18 regulates organelle morphology and Fab1 kinase activity independent of its membrane recruitment by phosphatidylinositol 3,5-bisphosphate.
    Efe JA; Botelho RJ; Emr SD
    Mol Biol Cell; 2007 Nov; 18(11):4232-44. PubMed ID: 17699591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphatidylinositol 4-kinases: old enzymes with emerging functions.
    Balla A; Balla T
    Trends Cell Biol; 2006 Jul; 16(7):351-61. PubMed ID: 16793271
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A new pathway for synthesis of phosphatidylinositol-4,5-bisphosphate.
    Rameh LE; Tolias KF; Duckworth BC; Cantley LC
    Nature; 1997 Nov; 390(6656):192-6. PubMed ID: 9367159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.