These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 19708136)

  • 21. Erratum: Preparation of Poly(pentafluorophenyl acrylate) Functionalized SiO2 Beads for Protein Purification.
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31038480
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fabrication of superhydrophobic films with robust adhesion and dual pinning state via in situ polymerization.
    Raza A; Si Y; Ding B; Yu J; Sun G
    J Colloid Interface Sci; 2013 Apr; 395():256-62. PubMed ID: 23245890
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Simple and cost-effective fabrication of highly flexible, transparent superhydrophobic films with hierarchical surface design.
    Kim TH; Ha SH; Jang NS; Kim J; Kim JH; Park JK; Lee DW; Lee J; Kim SH; Kim JM
    ACS Appl Mater Interfaces; 2015 Mar; 7(9):5289-95. PubMed ID: 25688451
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Superhydrophobic surfaces fabricated by femtosecond laser with tunable water adhesion: from lotus leaf to rose petal.
    Long J; Fan P; Gong D; Jiang D; Zhang H; Li L; Zhong M
    ACS Appl Mater Interfaces; 2015 May; 7(18):9858-65. PubMed ID: 25906058
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Self-Organization of Microscale Condensate for Delayed Flooding of Nanostructured Superhydrophobic Surfaces.
    Ölçeroğlu E; McCarthy M
    ACS Appl Mater Interfaces; 2016 Mar; 8(8):5729-36. PubMed ID: 26855239
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fabrication of Biomimetic Fog-Collecting Superhydrophilic-Superhydrophobic Surface Micropatterns Using Femtosecond Lasers.
    Kostal E; Stroj S; Kasemann S; Matylitsky V; Domke M
    Langmuir; 2018 Mar; 34(9):2933-2941. PubMed ID: 29364677
    [TBL] [Abstract][Full Text] [Related]  

  • 27. UVO-tunable superhydrophobic to superhydrophilic wetting transition on biomimetic nanostructured surfaces.
    Han JT; Kim S; Karim A
    Langmuir; 2007 Feb; 23(5):2608-14. PubMed ID: 17269808
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bioinspired super-antiwetting interfaces with special liquid-solid adhesion.
    Liu M; Zheng Y; Zhai J; Jiang L
    Acc Chem Res; 2010 Mar; 43(3):368-77. PubMed ID: 19954162
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Confined Growth and Controlled Coalescence/Self-Removal of Condensate Microdrops on a Spatially Heterogeneously Patterned Superhydrophilic-Superhydrophobic Surface.
    Xing D; Wang R; Wu F; Gao X
    ACS Appl Mater Interfaces; 2020 Jul; 12(26):29946-29952. PubMed ID: 32510195
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Robust hybrid elastomer/metal-oxide superhydrophobic surfaces.
    Hoshian S; Jokinen V; Franssila S
    Soft Matter; 2016 Aug; 12(31):6526-35. PubMed ID: 27418238
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fabrication of sticky and slippery superhydrophobic surfaces via spin-coating silica nanoparticles onto flat/patterned substrates.
    Cho KH; Chen LJ
    Nanotechnology; 2011 Nov; 22(44):445706. PubMed ID: 21979566
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Polydimethylsiloxane-Based Superhydrophobic Surfaces on Steel Substrate: Fabrication, Reversibly Extreme Wettability and Oil-Water Separation.
    Su X; Li H; Lai X; Zhang L; Liang T; Feng Y; Zeng X
    ACS Appl Mater Interfaces; 2017 Jan; 9(3):3131-3141. PubMed ID: 28032982
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Maskless Hydrophilic Patterning of the Superhydrophobic Aluminum Surface by an Atmospheric Pressure Microplasma Jet for Water Adhesion Controlling.
    Liu J; Song J; Wang G; Chen F; Liu S; Yang X; Sun J; Zheng H; Huang L; Jin Z; Liu X
    ACS Appl Mater Interfaces; 2018 Feb; 10(8):7497-7503. PubMed ID: 29405701
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biomolecule and nanoparticle transfer on patterned and heterogeneously wetted superhydrophobic silicon nanowire surfaces.
    Piret G; Coffinier Y; Roux C; Melnyk O; Boukherroub R
    Langmuir; 2008 Mar; 24(5):1670-2. PubMed ID: 18251564
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stable superhydrophobic organic-inorganic hybrid films by electrostatic self-assembly.
    Han JT; Zheng Y; Cho JH; Xu X; Cho K
    J Phys Chem B; 2005 Nov; 109(44):20773-8. PubMed ID: 16853692
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tunable Bubble Assembling on a Hybrid Superhydrophobic-Superhydrophilic Surface Fabricated by Selective Laser Texturing.
    Sun K; Yang H; Xue W; Cao M; Adeyemi K; Cao Y
    Langmuir; 2018 Nov; 34(44):13203-13209. PubMed ID: 30350683
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Selective adhesion of Bacillus cereus spores on heterogeneously wetted silicon nanowires.
    Galopin E; Piret G; Szunerits S; Lequette Y; Faille C; Boukherroub R
    Langmuir; 2010 Mar; 26(5):3479-84. PubMed ID: 19891454
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biological and nano-indentation properties of polybenzoxazine-based composites reinforced with zirconia particles as a novel biomaterial.
    Lotfi L; Javadpour J; Naimi-Jamal MR
    Biomed Mater Eng; 2018; 29(3):369-387. PubMed ID: 29578464
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Highly efficient and large-scale fabrication of superhydrophobic alumina surface with strong stability based on self-congregated alumina nanowires.
    Peng S; Tian D; Yang X; Deng W
    ACS Appl Mater Interfaces; 2014 Apr; 6(7):4831-41. PubMed ID: 24593862
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optically transparent superhydrophobic surfaces with enhanced mechanical abrasion resistance enabled by mesh structure.
    Yokoi N; Manabe K; Tenjimbayashi M; Shiratori S
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4809-16. PubMed ID: 25625787
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.