These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 19708154)

  • 1. Dissipative particle dynamics simulations of complexes comprised of cylindrical polyelectrolyte brushes and oppositely charged linear polyelectrolytes.
    Yan LT; Zhang X
    Langmuir; 2009 Apr; 25(6):3808-13. PubMed ID: 19708154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of counterion valency on the conformational behavior of cylindrical polyelectrolyte brushes.
    Yan LT; Xu Y; Ballauff M; Müller AH; Böker A
    J Phys Chem B; 2009 Apr; 113(15):5104-10. PubMed ID: 19354302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrostatic binding of oppositely charged surfactants to spherical polyelectrolyte brushes.
    Cao Q; Zuo C; Li L
    Phys Chem Chem Phys; 2011 May; 13(20):9706-15. PubMed ID: 21503300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics simulations of polyelectrolyte brushes: from single chains to bundles of chains.
    Sandberg DJ; Carrillo JM; Dobrynin AV
    Langmuir; 2007 Dec; 23(25):12716-28. PubMed ID: 17973411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational behaviors of a charged-neutral star micelle in salt-free solution.
    Deng M; Jiang Y; Li X; Wang L; Liang H
    Phys Chem Chem Phys; 2010 Jun; 12(23):6135-9. PubMed ID: 20405083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Manipulating the morphologies of cylindrical polyelectrolyte brushes by forming interpolyelectrolyte complexes with oppositely charged linear polyelectrolytes: an AFM study.
    Xu Y; Borisov OV; Ballauff M; Müller AH
    Langmuir; 2010 May; 26(10):6919-26. PubMed ID: 20229989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular bottle brushes in a solution of semiflexible polyelectrolytes and block copolymers with an oppositely charged block: a molecular dynamics simulation.
    Gus'kova OA; Pavlov AS; Khalatur PG; Khokhlov AR
    J Phys Chem B; 2007 Jul; 111(29):8360-8. PubMed ID: 17388489
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Collapse of highly charged polyelectrolytes triggered by attractive dipole-dipole and correlation-induced electrostatic interactions.
    Cherstvy AG
    J Phys Chem B; 2010 Apr; 114(16):5241-9. PubMed ID: 20359231
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mesoscale modeling of polyelectrolyte brushes with salt.
    Ibergay C; Malfreyt P; Tildesley DJ
    J Phys Chem B; 2010 Jun; 114(21):7274-85. PubMed ID: 20455593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ionic effects in collapse of polyelectrolyte brushes.
    Jiang T; Wu J
    J Phys Chem B; 2008 Jul; 112(26):7713-20. PubMed ID: 18543988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics simulation of discontinuous volume phase transitions in highly-charged crosslinked polyelectrolyte networks with explicit counterions in good solvent.
    Yin DW; Yan Q; de Pablo JJ
    J Chem Phys; 2005 Nov; 123(17):174909. PubMed ID: 16375571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Linear polyelectrolytes in tetravalent salt solutions.
    Hsiao PY
    J Chem Phys; 2006 Jan; 124(4):044904. PubMed ID: 16460209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monte Carlo simulations of charged dendrimer-linear polyelectrolyte complexes and explicit counterions.
    Kłos JS; Sommer JU
    J Chem Phys; 2011 May; 134(20):204902. PubMed ID: 21639472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Explicit ions condensation around strongly charged polyelectrolytes and spherical macroions: the influence of salt concentration and chain linear charge density. Monte Carlo simulations.
    Carnal F; Stoll S
    J Phys Chem A; 2012 Jun; 116(25):6600-8. PubMed ID: 22616671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of polyelectrolyte complexes by Brownian dynamics simulation: effects of the bond length asymmetry of the polyelectrolytes.
    Trejo-Ramos MA; Tristán F; Menchaca JL; Pérez E; Chávez-Páez M
    J Chem Phys; 2007 Jan; 126(1):014901. PubMed ID: 17212513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics simulations of polyelectrolyte-polyampholyte complexes. Effect of solvent quality and salt concentration.
    Jeon J; Dobrynin AV
    J Phys Chem B; 2006 Dec; 110(48):24652-65. PubMed ID: 17134228
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aggregation of rod-like polyelectrolyte chains in the presence of monovalent counterions.
    Varghese A; Rajesh R; Vemparala S
    J Chem Phys; 2012 Dec; 137(23):234901. PubMed ID: 23267499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Morphologies of planar polyelectrolyte brushes in a poor solvent: molecular dynamics simulations and scaling analysis.
    Carrillo JM; Dobrynin AV
    Langmuir; 2009 Nov; 25(22):13158-68. PubMed ID: 19899820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Counterion Valence on Conformational Behavior of Spherical Polyelectrolyte Brushes Confined between Two Parallel Walls.
    Li L; Cao Q; Zuo C
    Polymers (Basel); 2018 Mar; 10(4):. PubMed ID: 30966398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Collapse of spherical polyelectrolyte brushes in the presence of multivalent counterions.
    Mei Y; Lauterbach K; Hoffmann M; Borisov OV; Ballauff M; Jusufi A
    Phys Rev Lett; 2006 Oct; 97(15):158301. PubMed ID: 17155365
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.