BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 19708168)

  • 1. Specificity of ion-protein interactions: complementary and competitive effects of tetrapropylammonium, guanidinium, sulfate, and chloride ions.
    Mason PE; Dempsey CE; Vrbka L; Heyda J; Brady JW; Jungwirth P
    J Phys Chem B; 2009 Mar; 113(10):3227-34. PubMed ID: 19708168
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complex ion effects on polypeptide conformational stability: chloride and sulfate salts of guanidinium and tetrapropylammonium.
    Dempsey CE; Mason PE; Jungwirth P
    J Am Chem Soc; 2011 May; 133(19):7300-3. PubMed ID: 21520945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The structure of aqueous guanidinium chloride solutions.
    Mason PE; Neilson GW; Enderby JE; Saboungi ML; Dempsey CE; MacKerell AD; Brady JW
    J Am Chem Soc; 2004 Sep; 126(37):11462-70. PubMed ID: 15366892
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanometer-scale ion aggregates in aqueous electrolyte solutions: guanidinium sulfate and guanidinium thiocyanate.
    Mason PE; Dempsey CE; Neilson GW; Brady JW
    J Phys Chem B; 2005 Dec; 109(50):24185-96. PubMed ID: 16375411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions between hydrophobic and ionic solutes in aqueous guanidinium chloride and urea solutions: lessons for protein denaturation mechanism.
    O'Brien EP; Dima RI; Brooks B; Thirumalai D
    J Am Chem Soc; 2007 Jun; 129(23):7346-53. PubMed ID: 17503819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Do guanidinium and tetrapropylammonium ions specifically interact with aromatic amino acid side chains?
    Ding B; Mukherjee D; Chen J; Gai F
    Proc Natl Acad Sci U S A; 2017 Jan; 114(5):1003-1008. PubMed ID: 28096375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complex interactions between molecular ions in solution and their effect on protein stability.
    Shukla D; Schneider CP; Trout BL
    J Am Chem Soc; 2011 Nov; 133(46):18713-8. PubMed ID: 21973239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of association with sulfate on the electrophoretic mobility of polyarginine and polylysine.
    Wernersson E; Heyda J; Kubícková A; Krízek T; Coufal P; Jungwirth P
    J Phys Chem B; 2010 Sep; 114(36):11934-41. PubMed ID: 20726540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The reversal by sulfate of the denaturant activity of guanidinium.
    Dempsey CE; Mason PE; Brady JW; Neilson GW
    J Am Chem Soc; 2007 Dec; 129(51):15895-902. PubMed ID: 18052164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Orientational dependence of the affinity of guanidinium ions to the water surface.
    Wernersson E; Heyda J; Vazdar M; Lund M; Mason PE; Jungwirth P
    J Phys Chem B; 2011 Nov; 115(43):12521-6. PubMed ID: 21985190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanometer-scale ion aggregates in aqueous electrolyte solutions: guanidinium carbonate.
    Mason PE; Neilson GW; Kline SR; Dempsey CE; Brady JW
    J Phys Chem B; 2006 Jul; 110(27):13477-83. PubMed ID: 16821873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The molecular origin of like-charge arginine-arginine pairing in water.
    Vondrásek J; Mason PE; Heyda J; Collins KD; Jungwirth P
    J Phys Chem B; 2009 Jul; 113(27):9041-5. PubMed ID: 19354258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ion-specific interactions between halides and basic amino acids in water.
    Heyda J; Hrobárik T; Jungwirth P
    J Phys Chem A; 2009 Mar; 113(10):1969-75. PubMed ID: 19053553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aqueous guanidinium-carbonate interactions by molecular dynamics and neutron scattering: relevance to ion-protein interactions.
    Vazdar M; Jungwirth P; Mason PE
    J Phys Chem B; 2013 Feb; 117(6):1844-8. PubMed ID: 23245268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Concentration-dependent like-charge pairing of guanidinium ions and effect of guanidinium chloride on the structure and dynamics of water from all-atom molecular dynamics simulation.
    Mandal M; Mukhopadhyay C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):052708. PubMed ID: 24329297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface behavior of hydrated guanidinium and ammonium ions: a comparative study by photoelectron spectroscopy and molecular dynamics.
    Werner J; Wernersson E; Ekholm V; Ottosson N; Ohrwall G; Heyda J; Persson I; Söderström J; Jungwirth P; Björneholm O
    J Phys Chem B; 2014 Jun; 118(25):7119-27. PubMed ID: 24871810
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ion specificity at the peptide bond: molecular dynamics simulations of N-methylacetamide in aqueous salt solutions.
    Heyda J; Vincent JC; Tobias DJ; Dzubiella J; Jungwirth P
    J Phys Chem B; 2010 Jan; 114(2):1213-20. PubMed ID: 20038160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contrasting the denaturing effect of guanidinium chloride with the stabilizing effect of guanidinium sulfate.
    Graziano G
    Phys Chem Chem Phys; 2011 Jul; 13(25):12008-14. PubMed ID: 21617819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HeLa cell entry by guanidinium-rich beta-peptides: importance of specific cation-cell surface interactions.
    Potocky TB; Silvius J; Menon AK; Gellman SH
    Chembiochem; 2007 May; 8(8):917-26. PubMed ID: 17503427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The interaction of guanidinium ions with a model peptide.
    Mason PE; Brady JW; Neilson GW; Dempsey CE
    Biophys J; 2007 Jul; 93(1):L04-6. PubMed ID: 17449674
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.