BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 19708249)

  • 1. Uptake of a chemical warfare agent simulant (DMMP) on TiO2: reactive adsorption and active site poisoning.
    Panayotov DA; Morris JR
    Langmuir; 2009 Apr; 25(6):3652-8. PubMed ID: 19708249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption and thermal reaction of DMMP in nanocrystalline NaY.
    Knagge K; Johnson M; Grassian VH; Larsen SC
    Langmuir; 2006 Dec; 22(26):11077-84. PubMed ID: 17154587
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental study of dimethyl methylphosphonate decomposition over anatase TiO2.
    Trubitsyn DA; Vorontsov AV
    J Phys Chem B; 2005 Nov; 109(46):21884-92. PubMed ID: 16853843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption and photodegradation of dimethyl methylphosphonate vapor at TiO(2) surfaces.
    Moss JA; Szczepankiewicz SH; Park E; Hoffmann MR
    J Phys Chem B; 2005 Oct; 109(42):19779-85. PubMed ID: 16853558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding Dimethyl Methylphosphonate Adsorption and Decomposition on Mesoporous CeO
    Li T; Tsyshevsky R; Algrim L; McEntee M; Durke EM; Eichhorn B; Karwacki C; Zachariah MR; Kuklja MM; Rodriguez EE
    ACS Appl Mater Interfaces; 2021 Nov; 13(45):54597-54609. PubMed ID: 34730932
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical warfare agent simulant DMMP reactive adsorption on TiO
    Henych J; Štengl V; Mattsson A; Tolasz J; Österlund L
    J Hazard Mater; 2018 Oct; 359():482-490. PubMed ID: 30075367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative decomposition of dimethyl methylphosphonate on rutile TiO
    Tesvara C; Walenta C; Sautet P
    Phys Chem Chem Phys; 2022 Oct; 24(38):23402-23419. PubMed ID: 36128829
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decomposition of dimethyl methylphosphonate on Pt, Au, and Au-Pt clusters supported on TiO2(110).
    Ratliff JS; Tenney SA; Hu X; Conner SF; Ma S; Chen DA
    Langmuir; 2009 Jan; 25(1):216-25. PubMed ID: 19053659
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption and decomposition of dimethyl methylphosphonate on size-selected (MoO
    Tang X; Hicks Z; Wang L; Ganteför G; Bowen KH; Tsyshevsky R; Sun J; Kuklja MM
    Phys Chem Chem Phys; 2018 Feb; 20(7):4840-4850. PubMed ID: 29383341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dimethyl methylphosphonate decomposition on Cu surfaces: supported Cu nanoclusters and films on TiO2(110).
    Ma S; Zhou J; Kang YC; Reddic JE; Chen DA
    Langmuir; 2004 Oct; 20(22):9686-94. PubMed ID: 15491203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environmental Effects on Zirconium Hydroxide Nanoparticles and Chemical Warfare Agent Decomposition: Implications of Atmospheric Water and Carbon Dioxide.
    Balow RB; Lundin JG; Daniels GC; Gordon WO; McEntee M; Peterson GW; Wynne JH; Pehrsson PE
    ACS Appl Mater Interfaces; 2017 Nov; 9(45):39747-39757. PubMed ID: 29053242
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sorption of dimethyl methylphosphonate within Langmuir-Blodgett films of trisilanolphenyl polyhedral oligomeric silsesquioxane.
    Ferguson-McPherson MK; Low ER; Esker AR; Morris JR
    J Phys Chem B; 2005 Oct; 109(40):18914-20. PubMed ID: 16853435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of Dimethyl Methylphosphonate Adsorption and Decomposition on Zirconium Hydroxide Using Variable Temperature In Situ Attenuated Total Reflection Infrared Spectroscopy.
    Jeon S; Schweigert IV; Pehrsson PE; Balow RB
    ACS Appl Mater Interfaces; 2020 Apr; 12(13):14662-14671. PubMed ID: 32105054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced photocatalytic degradation of dimethyl methylphosphonate in the presence of low-frequency ultrasound.
    Chen YC; Vorontsov AV; Smirniotis PG
    Photochem Photobiol Sci; 2003 Jun; 2(6):694-8. PubMed ID: 12859156
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decomposition of dimethyl methylphosphonate vapor on ultrathin-film titania photocatalytic light absorber.
    Wu W; Song H; Gan Q; Liu D
    Chemosphere; 2021 Jul; 274():129719. PubMed ID: 33540318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vapor-phase photo-oxidation of methanol over nano-size titanium dioxide clusters dispersed in MCM-41 host material part 2: catalytic properties and surface transient species.
    Bhattacharyya K; Varma S; Kumar D; Tripathi AK; Gupta NM
    J Nanosci Nanotechnol; 2005 May; 5(5):797-805. PubMed ID: 16010942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding the Decomposition of Dimethyl Methyl Phosphonate on Metal-Modified TiO
    Bonney MJ; Tesvara C; Sautet P; White MG
    ACS Appl Mater Interfaces; 2024 May; 16(19):25483-25497. PubMed ID: 38709241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dimethyl Methylphosphonate Adsorption Capacities and Desorption Energies on Ordered Mesoporous Carbons.
    Huynh K; Holdren S; Hu J; Wang L; Zachariah MR; Eichhorn BW
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40638-40644. PubMed ID: 29083156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chitosan-Derived Porous Activated Carbon for the Removal of the Chemical Warfare Agent Simulant Dimethyl Methylphosphonate.
    Yu H; Son YR; Yoo H; Cha HG; Lee H; Kim HS
    Nanomaterials (Basel); 2019 Nov; 9(12):. PubMed ID: 31795246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomic-Level Structural Dynamics of Polyoxoniobates during DMMP Decomposition.
    Wang Q; Chapleski RC; Plonka AM; Gordon WO; Guo W; Nguyen-Phan TD; Sharp CH; Marinkovic NS; Senanayake SD; Morris JR; Hill CL; Troya D; Frenkel AI
    Sci Rep; 2017 Apr; 7(1):773. PubMed ID: 28396583
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.