These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 19708254)

  • 1. Modeling of formation of nanoparticles in reverse micellar systems: Ostwald ripening of silver halide particles.
    Shukla D; Joshi AA; Mehra A
    Langmuir; 2009 Apr; 25(6):3786-93. PubMed ID: 19708254
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of the water content on the growth rate of AgCl nanoparticles in a reversed micelle system.
    Kimijima K; Sugimoto T
    J Colloid Interface Sci; 2005 Jun; 286(2):520-5. PubMed ID: 15897066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of Y2O3:Eu3+ nanoparticles in reverse micellar systems and their photoluminescence properties.
    Hirai T; Asada Y; Komasawa I
    J Colloid Interface Sci; 2004 Aug; 276(2):339-45. PubMed ID: 15271561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Controllable synthesis and UV-Vis spectral analysis of silver nanoparticles in AOT microemulsion].
    Zhang WZ; Qiao XL; Luo LL; Chen JG
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Mar; 29(3):789-92. PubMed ID: 19455825
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The definition of "critical radius" for a collection of nanoparticles undergoing Ostwald ripening.
    Houk LR; Challa SR; Grayson B; Fanson P; Datye AK
    Langmuir; 2009 Oct; 25(19):11225-7. PubMed ID: 19715330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recovery of silver nanoparticles synthesized on AOT/C(12)E(4) mixed reverse micelles by antisolvent CO(2).
    Zhang J; Han B; Liu J; Zhang X; He J; Liu Z; Jiang T; Yang G
    Chemistry; 2002 Sep; 8(17):3879-83. PubMed ID: 12360929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct observation of solvation dynamics in an aqueous reverse micellar system containing silver nanoparticles in the reverse micellar core.
    Setua P; Pramanik R; Sarkar S; Seth D; Sarkar N
    J Phys Chem B; 2009 Apr; 113(17):5677- 80. PubMed ID: 19143550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silver nanoparticles capped by oleylamine: formation, growth, and self-organization.
    Chen M; Feng YG; Wang X; Li TC; Zhang JY; Qian DJ
    Langmuir; 2007 May; 23(10):5296-304. PubMed ID: 17425348
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of YF3 nanoparticle formation in reverse micelles.
    Lemyre JL; Lamarre S; Beaupré A; Ritcey AM
    Langmuir; 2011 Oct; 27(19):11824-34. PubMed ID: 21842856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Roles of nucleation, denucleation, coarsening, and aggregation kinetics in nanoparticle preparations and neurological disease.
    Skrdla PJ
    Langmuir; 2012 Mar; 28(10):4842-57. PubMed ID: 22324463
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of silver particle formation during photoreduction using in situ time-resolved SAXS analysis.
    Harada M; Katagiri E
    Langmuir; 2010 Dec; 26(23):17896-905. PubMed ID: 21047110
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coagulation of nanoparticles in reverse micellar systems: a Monte Carlo model.
    Jain R; Shukla D; Mehra A
    Langmuir; 2005 Nov; 21(24):11528-33. PubMed ID: 16285836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of oil type on nanoemulsion formation and Ostwald ripening stability.
    Wooster TJ; Golding M; Sanguansri P
    Langmuir; 2008 Nov; 24(22):12758-65. PubMed ID: 18850732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distribution kinetics of Ostwald ripening at large volume fraction and with coalescence.
    Madras G; McCoy BJ
    J Colloid Interface Sci; 2003 May; 261(2):423-33. PubMed ID: 16256552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environmentally abundant anions influence the nucleation, growth, Ostwald ripening, and aggregation of hydrous Fe(III) oxides.
    Hu Y; Lee B; Bell C; Jun YS
    Langmuir; 2012 May; 28(20):7737-46. PubMed ID: 22568400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ostwald ripening of confined nanoparticles: chemomechanical coupling in nanopores.
    Gommes CJ
    Nanoscale; 2019 Apr; 11(15):7386-7393. PubMed ID: 30938749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Experimental Study on the Relationship between the Physical Properties of CTAB/Hexanol/Water Reverse Micelles and ZrO2-Y2O3 Nanoparticles Prepared.
    Fang X; Yang C
    J Colloid Interface Sci; 1999 Apr; 212(2):242-251. PubMed ID: 10092352
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-dimensional nanoparticle self-assembly using plasma-induced Ostwald ripening.
    Tang J; Photopoulos P; Tserepi A; Tsoukalas D
    Nanotechnology; 2011 Jun; 22(23):235306. PubMed ID: 21483049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solubilization rates of oils in surfactant solutions and their relationship to mass transport in emulsions.
    Peña AA; Miller CA
    Adv Colloid Interface Sci; 2006 Nov; 123-126():241-57. PubMed ID: 16860285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct observation of single Ostwald ripening processes by molecular dynamics simulation.
    Kraska T
    J Phys Chem B; 2008 Oct; 112(39):12408-13. PubMed ID: 18783194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.